LM70 Datasheet by Texas Instruments

I TEXAS INSTRUMENTS
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
LM70 SPI/MICROWIRE 10-Bit plus Sign Digital Temperature Sensor
Check for Samples: LM70
1FEATURES DESCRIPTION
2 0.25°C Temperature Resolution. The LM70 is a temperature sensor, Delta-Sigma
Shutdown Mode Conserves Power Between analog-to-digital converter with an SPI and
Temperature Reading MICROWIRE compatible interface available in WSON
SPI and MICROWIRE Bus Interface and VSSOP 8-pin packages. The host can query the
LM70 at any time to read temperature. A shutdown
VSSOP-8 and WSON-8 Packages Save Space mode decreases power consumption to less than 10
UL Recognized Component µA. This mode is useful in systems where low
average power consumption is critical.
APPLICATIONS The LM70 has 10-bit plus sign temperature resolution
System Thermal Management (0.25°C per LSB) while operating over a temperature
Personal Computers range of 55°C to +150°C.
Disk Drives The LM70's 2.65V to 5.5V supply voltage range, low
Office Electronics supply current and simple SPI interface make it ideal
for a wide range of applications. These include
Electronic Test Equipment thermal management and protection applications in
hard disk drives, printers, electronic test equipment,
KEY SPECIFICATIONS and office electronics.
Supply Voltage 2.65V to 5.5V
Supply Current
– Operating
260 μA (typ)
490 μA (max)
– Shutdown
12 μA (typ)
Temperature Accuracy
40°C to 85°C, ±2°C(max)
10°C to 65°C, +1.5/2°C(max)
55°C to 125°C, +3/2°C(max)
55°C to 150°C, +3.5/2°C(max)
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2000–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
l TEXAS INSTRUMENTS 2 65V , 5 5v Ye'vperamve WEI! Sam M c M, MD mm LM70 322‘? my ' suo a 42%;; c sue—1 U 8—NC sue—1 U e—fi sc—z LM70 7—cs NC—Z LM70 7—GND NC—a 6—NC sc—3 6—NC GNU—4 5—v" Nc—A 5—v"
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
Simplified Block Diagram
Connection Diagram
Top View Top View
Figure 1. VSSOP-8 Package Figure 2. WSON-8 Package
See Package Number DGK0008A See Package Number NGK0008A
PIN DESCRIPTIONS
VSSOP-8 WSON-8
Pin Name Description Typical Connection
Pin No. Pin No.
SI/O 1 1 Input/Output - Serial bus bi-directional data line. From and to Controller
Schmitt trigger input.
SC 2 3 Clock - Serial bus clock Schmitt trigger input line. From Controller
GND 4 7 Power Supply Ground Ground
V+5 5 Positive Supply Voltage Input DC Voltage from 2.65V to 5.5V. Bypass with a
0.1 μF ceramic capacitor.
CS 7 8 Chip Select input. From Controller
NC 3, 6, 8 2, 4, 6 No Connect These pins are not connected to the LM70 die
in any way.
2Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
l TEXAS INSTRUMENTS +3.3 V L0(GP|/O) COP8SA Mien} Controller SI SK Sl/O SC GND on “F
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
Typical Application
Figure 3. COP Microcontroller Interface
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM70
l TEXAS INSTRUMENTS
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
Absolute Maximum Ratings(1)
Supply Voltage 0.3V to 6.0V
Voltage at any Pin 0.3V to V++ 0.3V
Input Current at any Pin(2) 5 mA
Package Input Current(2) 20 mA
Storage Temperature 65°C to +150°C
Soldering Information, Lead Temperature
VSSOP-8 and WSON-8 Packages(3)
Vapor Phase (60 seconds) 215°C
Infrared (15 seconds) 220°C
ESD Susceptibility(4)
Human Body Model 3000V
Machine Model 300V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not
apply when operating the device beyond its rated operating conditions.
(2) When the input voltage (VI) at any pin exceeds the power supplies (VI< GND or VI> +VS) the current at that pin should be limited to 5
mA. The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input
current of 5 mA to four.
(3) See the section titled “Surface Mount” found in a current Linear Data Book for other methods of soldering surface mount devices.
(4) Human body model, 100 pF discharged through a 1.5 kΩresistor. Machine model, 200 pF discharged directly into each pin.
Operating Ratings
Specified Temperature Range TMIN to TMAX
See(1) 55°C to +150°C
Supply Voltage Range (+VS) +2.65V to +5.5V
(1) The life expectancy of the LM70 will be reduced when operating at elevated temperatures. LM70 θJA (thermal resistance, junction-to-
ambient) when attached to a printed circuit board with 2 oz. foil is summarized in the table below:Device Number LM70CILD Thermal
Resistance (θJA), 51.3°C/W, Device Number LM70CIMM Thermal Resistance (θJA), 200°C/W
Temperature-to-Digital Converter Characteristics
Unless otherwise noted, these specifications apply for V+= 2.65V to 3.6V for the LM70-3 and V+= 4.5V to 5.5V for the LM70-
5(1).Boldface limits apply for TA= TJ= TMIN to TMAX;all other limits TA= TJ=+25°C, unless otherwise noted.
LM70-5 LM70-3 Units
Parameter Test Conditions Typical(2) Limits(3) Limits(3) (Limit)
Temperature Error(1) TA=10°C to +65°C +1.5/2.0 +1.5/2.0 °C (max)
TA=40°C to +85°C ±2.0 ±2.0 °C (max)
TA=55°C to +125°C +3.0/2.0 +3.0/2.0 °C (max)
TA=55°C to +150°C +3.5/2.0 +3.5/2.0 °C (max)
Resolution 11 Bits
0.25 °C
Temperature Conversion Time See(4) 140 210 210 ms (max)
Quiescent Current Serial Bus Inactive 260 490 490 μA (max)
Serial Bus Active 260 μA
Shutdown Mode 12 μA
(1) Both part numbers of the LM70 will operate properly over the V+supply voltage range of 2.65V to 5.5V. The temperature error for
temperature ranges of 10°C to +65°C, 40°C to +85°C, 55°C to +125°C and 55°C to +150°C include error induced by power supply
variation of ±5% from the nominal value. Temperature error will increase by ±0.3°C for a power supply voltage (V+) variation of ±10%
from the nominal value.
(2) Typicals are at TA= 25°C and represent most likely parametric norm.
(3) Limits are guaranteed to AOQL (Average Outgoing Quality Level).
(4) This specification is provided only to indicate how often temperature data is updated. The LM70 can be read at any time without regard
to conversion state (and will yield last conversion result). A conversion in progress will not be interrupted. The output shift register will be
updated at the completion of the read and a new conversion restarted.
4Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
l TEXAS INSTRUMENTS
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
Logic Electrical Characteristics Digital DC Characteristics
Unless otherwise noted, these specifications apply for V+= 2.65V to 3.6V for the LM70-3 and V+= 4.5V to 5.5V for the LM70-
5. Boldface limits apply for TA= TJ= TMIN to TMAX;all other limits TA= TJ=+25°C, unless otherwise noted.
Units
Parameter Test Conditions Typical(1) Limits(2) (Limit)
VIN(1) Logical “1” Input Voltage V+× 0.7 V (min)
V++ 0.3 V (max)
VIN(0) Logical “0” Input Voltage 0.3 V (min)
V+× 0.3 V (max)
Input Hysteresis Voltage V+= 2.65V to 3.6V 0.8 0.27 V (min)
V+= 4.5V to 5.5V 0.8 0.35 V (min)
IIN(1) Logical “1” Input Current VIN = V+0.005 3.0 μA (max)
IIN(0) Logical “0” Input Current VIN = 0V 0.005 3.0 μA (min)
CIN All Digital Inputs 20 pF
VOH High Level Output Voltage IOH =400 μA2.4 V (min)
VOL Low Level Output Voltage IOL = +2 mA 0.4 V (max)
IO_TRI-STATE TRI-STATE Output Leakage Current VO= GND 1μA (min)
VO= V++1 μA (max)
(1) Typicals are at TA= 25°C and represent most likely parametric norm.
(2) Limits are guaranteed to AOQL (Average Outgoing Quality Level).
Logic Electrical Characteristics Serial Bus Digital Switching Characteristics
Unless otherwise noted, these specifications apply for V+= 2.65V to 3.6V for the LM70-3 and V+= 4.5V to 5.5V for the LM70-
5, CL(load capacitance) on output lines = 100 pF unless otherwise specified. Boldface limits apply for TA= TJ= TMIN to
TMAX;all other limits TA= TJ= +25°C, unless otherwise noted.
Units
Parameter Test Conditions Typical(1) Limits(2) (Limit)
t1SC (Clock) Period 0.16 μs (min)
DC (max)
t2CS Low to SC (Clock) High Set-Up Time 100 ns (min)
t3CS Low to Data Out (SO) Delay 70 ns (max)
t4SC (Clock) Low to Data Out (SO) Delay 70 ns (max)
t5CS High to Data Out (SO) TRI-STATE 200 ns (min)
t6SC (Clock) High to Data In (SI) Hold Time 60 ns (min)
t7Data In (SI) Set-Up Time to SC (Clock) High 30 ns (min)
(1) Typicals are at TA= 25°C and represent most likely parametric norm.
(2) Limits are guaranteed to AOQL (Average Outgoing Quality Level).
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM70
SCW H r/\'»’J:’JJ‘ LJHHF
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
Timing Diagrams
Figure 4. Data Output Timing Diagram
Figure 5. TRI-STATE Data Output Timing Diagram
Figure 6. Data Input Timing Diagram
6Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
l TEXAS INSTRUMENTS mmzmabni HUU‘V‘uq‘muqi 4.50: To LM7O SI/O pin 80 pF n .mmm new nummw 7“ .ammmn 1.4V
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
Figure 7. Temperature-to-Digital Transfer Function (Non-linear scale for clarity)
Figure 8. TRI-STATE Test Circuit
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM70
*9 TEXAS INSTRUMENTS : / w my , V>7W m V :V H ,15 500 m m m m a SEES“. :3; 5:2 ‘sn .. 19.5 mxaimng as 25 75 um raw-pen“: 1m 15 5a 75 3 34:2 max zvxmafi YmPEMmRE (um
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
Typical Performance Characteristics
Average Power-On Reset Voltage vs Temperature Static Supply Current vs Temperature
Figure 9. Figure 10.
Temperature Error
Figure 11.
8Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
l TEXAS INSTRUMENTS
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
FUNCTIONAL DESCRIPTION
The LM70 temperature sensor incorporates a band-gap type temperature sensor and 10-bit plus sign ΔΣ ADC
(Delta-Sigma Analog-to-Digital Converter). Compatibility of the LM70's three wire serial interface with SPI and
MICROWIRE allows simple communications with common microcontrollers and processors. Shutdown mode can
be used to optimize current drain for different applications. A manufacture's ID register identifies the LM70 as a
TI product.
POWER UP AND POWER DOWN
The LM70 always powers up in a known state. The power up default condition is continuous conversion mode.
Immediatly after power up the LM70 will output an erroneous code until the first temperature conversion has
completed.
When the supply voltage is less than about 1.6V (typical), the LM70 is considered powered down. As the supply
voltage rises above the nominal 1.6V power up threshold, the internal registers are reset to the power up default
state described above.
SERIAL BUS INTERFACE
The LM70 operates as a slave and is compatible with SPI or MICROWIRE bus specifications. Data is clocked
out on the falling edge of the serial clock (SC), while data is clocked in on the rising edge of SC. A complete
transmit/receive communication will consist of 32 serial clocks. The first 16 clocks comprise the transmit phase of
communication, while the second 16 clocks are the receive phase.
When CS is high SI/O will be in TRISTATE. Communication should be initiated by taking chip select (CS) low.
This should not be done when SC is changing from a low to high state. Once CS is low the serial I/O pin (SI/O)
will transmit the first bit of data. The master can then read this bit with the rising edge of SC. The remainder of
the data will be clocked out by the falling edge of SC. Once the 14 bits of data (one sign bit, ten temperature bits
and 3 high bits) are transmitted the SI/O line will go into TRI-STATE. CS can be taken high at any time during
the transmit phase. If CS is brought low in the middle of a conversion the LM70 will complete the conversion and
the output shift register will be updated after CS is brought back high.
The receive phase of a communication starts after 16 SC periods. CS can remain low for 32 SC cycles. The
LM70 will read the data available on the SI/O line on the rising edge of the serial clock. Input data is to an 8-bit
shift register. The part will detect the last eight bits shifted into the register. The receive phase can last up to 16
SC periods. All ones must be shifted in order to place the part into shutdown. A zero in any location will take the
LM70 out of shutdown. The following codes only should be transmitted to the LM70:
00 hex (normal operation)
01 hex (normal operation)
03 hex (normal operation)
07 hex (normal operation)
0F hex (normal operation)
1F hex (normal operation)
3F hex(normal operation)
7F hex(normal operation)
FF hex (Shutdown, transmit manufacturer's ID)
any others may place the part into a Test Mode. Test Modes are used by TI to thoroughly test the function of the
LM70 during production testing. Only eight bits have been defined above since only the last eight transmitted,
before CS is taken HIGH, are detected by the LM70
The following communication can be used to determine the Manufacturer's/Device ID and then immediately place
the part into continuous conversion mode. With CS continuously low:
Read 16 bits of temperature data
Write 16 bits of data commanding shutdown
Read 16 bits of Manufacture's/Device ID data
Write 8 to 16 bits of data commanding Conversion Mode
Take CS HIGH.
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM70
l TEXAS INSTRUMENTS
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
Note that 210 ms will have to pass for a conversion to complete before the LM70 actually transmits temperature
data.
TEMPERATURE DATA FORMAT
Temperature data is represented by a 11-bit, two's complement word with an LSB (Least Significant Bit) equal to
0.25°C:
Digital Output
Temperature Binary Hex
+150°C 0100 1011 0001 1111 4B 1Fh
+125°C 0011 1110 1001 1111 3E 9Fh
+25°C 0000 1100 1001 1111 0B 9Fh
+0.25°C 0000 0000 0011 1111 00 3Fh
0°C 0000 0000 0001 1111 00 1Fh
0.25°C 1111 1111 1111 1111 FF FFh
25°C 1111 0011 1001 1111 F3 9Fh
55°C 1110 0100 1001 1111 E4 9Fh
Note: The last two bits are TRI-STATE and depicted as one in the table.
The first data byte is the most significant byte with most significant bit first, permitting only as much data as
necessary to be read to determine temperature condition. For instance, if the first four bits of the temperature
data indicate an overtemperature condition, the host processor could immediately take action to remedy the
excessive temperatures.
SHUTDOWN MODE/MANUFACTURER'S ID
Shutdown mode is enabled by writing XX FF to the LM70 as shown in Figure 14c. and discussed in Section 1.2.
The serial bus is still active when the LM70 is in shutdown. Current draw drops to less than 10 µA between serial
communications. When in shutdown mode the LM70 always will output 1000 0001 0000 00XX. This is the
manufacturer's ID/Device ID information. The first 5-bits of the field (1000 0XXX) are reserved for manufacturer's
ID.
INTERNAL REGISTER STRUCTURE
The LM70 has three registers, the temperature register, the configuration register and the manufacturer's/device
identification register. The temperature and manufacturer's/device identification registers are read only. The
configuration register is write only.
CONFIGURATION REGISTER
(Selects shutdown or continuous conversion modes):
Table 1. (Write Only):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X X X X X X X X Shutdown
D0-D15 set to XX FF hex enables shutdown mode.
D0-D15 set to XX 00 hex enables continuous conversion mode.
Note: setting D0-D15 to any other values may place the LM70 into a manufacturer's test mode, upon which the
LM70 will stop responding as described. These test modes are to be used for production testing only. See
Section 1.2 Serial Bus Interface for a complete discussion.
10 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
l TEXAS INSTRUMENTS so J'J'LFLFLHLHLHJW_ as ‘I ' SO ‘ A as 1 r so Emu-IIII-Iu J‘JUImrmj'JmImImI’IJmIJ—Mmfjmf as I u/ w.( W I‘— Data (rem Ihe LM70 —><7 data="" from="" ole="" control‘er="">
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
TEMPERATURE REGISTER
Table 2. (Read Only):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MSB Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB 1 1 1 X X
D0–D1: Undefined. TRI-STATE will be output on SI/0.
D2–D4: Always set high.
D5–D15: Temperature Data. One LSB = 0.25°C. Two's complement format.
MANUFACTURER'S/DEVICE ID REGISTER
Table 3. (Read Only):
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
10000001000000XX
D0–D1: Undefined. TRI-STATE will be output on SI/0.
D2-D4: Always set LOW.
D5–D15: Manufacturer's ID Data. This register is accessed whenever the LM70 is in shutdown mode.
Serial Bus Timing Diagrams
Figure 12. a) Reading Continuous Conversion - Single Eight-Bit Frame
Figure 13. b) Reading Continuous Conversion - Two Eight-Bit Frames
Figure 14. c) Writing Shutdown Control
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM70
l TEXAS INSTRUMENTS +5V LM70 GPI/O —> C8 V+ 01 HF RXD 4—D Sl/O TXD —> so GND Intel 196 Micro— Controller
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
Application Hints
To get the expected results when measuring temperature with an integrated circuit temperature sensor like the
LM70, it is important to understand that the sensor measures its own die temperature. For the LM70, the best
thermal path between the die and the outside world is through the LM70's pins. In the VSSOP-8 package the
ground pin is connected to the back side of the LM70 die and thus has the most effect on the die temperature.
Although the other pins will also have some effect on the LM70die temperature and therefore should not be
discounted. The LM70 will provide an accurate measurement of the temperature of the printed circuit board on
which it is mounted, because the pins represent a good thermal path to the die. A less efficient thermal path
exists between the plastic package and the LM70 die. If the ambient air temperature is significantly different from
the printed circuit board temperature, it will have a small effect on the measured temperature.
In probe-type applications, the LM70 can be mounted inside a sealed-end metal tube, and can then be dipped
into a bath or screwed into a threaded hole in a tank. As with any IC, the LM70 and accompanying wiring and
circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may
operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as
Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM70 or its
connections.
Typical Applications
Figure 15. Temperature Monitor Using Intel 196 Processor
12 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
l TEXAS INSTRUMENTS GF‘l/O1 —> C‘S 10K GPI/02 MISO E I.» so so 68HC11 Micro- Controller S l/O LM70 V+ GND 5V 0.1 HF
LM70
www.ti.com
SNIS112G –JUNE 2000REVISED MARCH 2013
Figure 16. LM70 Digital Input Control Using Micro-Controller's General Purpose I/O
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM70
l TEXAS INSTRUMENTS
LM70
SNIS112G –JUNE 2000REVISED MARCH 2013
www.ti.com
REVISION HISTORY
Changes from Revision F (March 2013) to Revision G Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 13
14 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM70
TEXAS INSTRUMENTS Samples Samples Samples Samples Samples Samples Samples
PACKAGE OPTION ADDENDUM
www.ti.com 29-Mar-2022
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM70CILD-3/NOPB ACTIVE WSON NGK 8 1000 RoHS & Green SN Level-3-260C-168 HR -55 to 150 T33
LM70CILD-5/NOPB ACTIVE WSON NGK 8 1000 RoHS & Green SN Level-3-260C-168 HR -55 to 150 T35
LM70CILDX-3/NOPB ACTIVE WSON NGK 8 4500 RoHS & Green SN Level-3-260C-168 HR -55 to 150 T33
LM70CIMM-3 NRND VSSOP DGK 8 1000 Non-RoHS
& Green Call TI Level-1-260C-UNLIM -55 to 150 T04C
LM70CIMM-3/NOPB ACTIVE VSSOP DGK 8 1000 RoHS & Green SN Level-1-260C-UNLIM -55 to 150 T04C
LM70CIMM-5 NRND VSSOP DGK 8 1000 Non-RoHS
& Green Call TI Level-1-260C-UNLIM -55 to 150 T03C
LM70CIMM-5/NOPB ACTIVE VSSOP DGK 8 1000 RoHS & Green SN Level-1-260C-UNLIM -55 to 150 T03C
LM70CIMMX-3/NOPB ACTIVE VSSOP DGK 8 3500 RoHS & Green SN Level-1-260C-UNLIM -55 to 150 T04C
LM70CIMMX-5/NOPB ACTIVE VSSOP DGK 8 3500 RoHS & Green SN Level-1-260C-UNLIM -55 to 150 T03C
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
I TEXAS INSTRUMENTS
PACKAGE OPTION ADDENDUM
www.ti.com 29-Mar-2022
Addendum-Page 2
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
I TEXAS INSTRUMENTS 5:. V.’
PACKAGE MATERIALS INFORMATION
www.ti.com 9-Aug-2022
TAPE AND REEL INFORMATION
Reel Width (W1)
REEL DIMENSIONS
A0
B0
K0
W
Dimension designed to accommodate the component length
Dimension designed to accommodate the component thickness
Overall width of the carrier tape
Pitch between successive cavity centers
Dimension designed to accommodate the component width
TAPE DIMENSIONS
K0 P1
B0 W
A0
Cavity
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
Pocket Quadrants
Sprocket Holes
Q1 Q1Q2 Q2
Q3 Q3Q4 Q4 User Direction of Feed
P1
Reel
Diameter
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM70CILD-3/NOPB WSON NGK 8 1000 178.0 12.4 3.3 3.3 1.0 8.0 12.0 Q1
LM70CILD-5/NOPB WSON NGK 8 1000 178.0 12.4 3.3 3.3 1.0 8.0 12.0 Q1
LM70CILDX-3/NOPB WSON NGK 8 4500 330.0 12.4 3.3 3.3 1.0 8.0 12.0 Q1
LM70CIMM-3 VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM70CIMM-3/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM70CIMM-5 VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM70CIMM-5/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM70CIMMX-3/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM70CIMMX-5/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com 9-Aug-2022
TAPE AND REEL BOX DIMENSIONS
Width (mm)
W
H
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM70CILD-3/NOPB WSON NGK 8 1000 367.0 367.0 35.0
LM70CILD-5/NOPB WSON NGK 8 1000 367.0 367.0 35.0
LM70CILDX-3/NOPB WSON NGK 8 4500 356.0 356.0 35.0
LM70CIMM-3 VSSOP DGK 8 1000 208.0 191.0 35.0
LM70CIMM-3/NOPB VSSOP DGK 8 1000 208.0 191.0 35.0
LM70CIMM-5 VSSOP DGK 8 1000 208.0 191.0 35.0
LM70CIMM-5/NOPB VSSOP DGK 8 1000 208.0 191.0 35.0
LM70CIMMX-3/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0
LM70CIMMX-5/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0
Pack Materials-Page 2
r15: 1 43x 9 51 I] mill] DIMENSIONS ARE IN NILLINEI'ERS ex 0 2514 L tax a 5 REcomEMJED LAND PATTERN T ‘ ‘ rwm ww we so rm :ws \ \ ,,7.7,, A 2; \ \m , 4 Eézzfisséfsz; ‘” Lfi, \ mum/H“, u hyé/{Iffffiff ié2;:;z;;:;z;2; ’ x V m, (”WM/Mm Wt ‘0/77777i7,7,7 me‘ U m [HE] E 7 JL \ ‘5 iexoawx ” 3:“ A sxozwoos ‘ ‘ (NT lay—1J0 To 1 L—+exm Lug—4 ' TEXAS INSTRUMENTS
MECHANICAL DATA
NGK0008A
www.ti.com
LDA08A (Rev C)
MECHANICAL DATA DGK (S—PDSO—GS) PLASTIC SMALL—OUTLINE PACKAGE m1 WW“: {[0 VAX % j 3,010 I 4073329/E 05/06 NO'ES' A AH imec' dimensmrs c'e m m'hmeiers 5 Th: drawing is enmec: :e change within: nciice. Body icnqth Coos mi mciucc maid Hash, protrusions or we tms Mom 'iush, aromons, ov qaw burrs shaH m exceed 015 per end b Budy mm does not wcude inierieud flasi‘ inieriead ‘iush s'mii 'mi exceed 050 pe' we : FuHs wiUHn JEDEC M0487 quulion AA, except 'vievieud ricer INSTRUMENTS w. (i. com
LAND PATTERN DATA DGK (37PD30708) PLASTIC SMALL OUTLINE PACKAGE Exampie Board Layout Exampie stencii Openings Based on a stencii thickness of .127mm L005inch), (See Nate 0) (,0 65) TYP ‘ Li 5 LLLLL L, pm ,,,,, PKG PKG "\ i i 4 — ----- i — ----- i D DU D i i ’ PKG PKG Q G . / Exampie , Non Soldermusk Defined Pad i , , —\ L A ~/ ‘\ Example \ Spider Musk Opening / +1 1‘(0,45) ‘ (See Note E) t 1 (1,45) < ‘="" \pud="" geometry="" ’="" (see="" note="" c)="" \="" +ii¢="" (0,05)="" \="" ah="" around="" «="" ,="" \="" e="" ’="" i="" ‘\-=""> muss/A 11/13 NOTES: A. Ali iinear dimensions are in miilimeters. a. This drawing is subject ta change without natiee, C, Publication |PCi7351 is recommended ior alternate designsu a. Laser cutting apertures with trapezoidui walls and aisa rounding corners w‘iH ofler eetter paste veiease. Customers snouid Contact their board ussembiy site for stencii design recommendations. Rater tn IFS—7525 for other slenci'i recummendutions. Customers should Contact their tmurd fabrication site for solder musk tolerances between and around signal pads. .r'I {I TEXAS INSTRUMENTS www.li.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated