L6563H Datasheet by STMicroelectronics

‘ ’l liieaugmenfed AM02253v1
This is information on a product in full production.
June 2017 DocID16047 Rev 4 1/50
L6563H
High voltage start-up transition-mode PFC
Datasheet - production data
Features
On-board 700 V start-up source
Tracking boost function
Fast “bidirectional” input voltage feedforward
(1/V2 correction)
Interface for cascaded converter's PWM
controller
Remote ON/OFF control
Accurate adjustable output overvoltage
protection
Protection against feedback loop
disconnection (latched shutdown)
Inductor saturation protection
Low (100 µA) start-up current
6 mA max. operating bias current
1% (at TJ = 25 °C) internal reference voltage
-600/+800 mA totem pole gate driver with
active pull-down during UVLO
Applications
PFC pre-regulators for:
Hi-end AC-DC adapter/charger
IEC61000-3-2 or JEITA-MITI compliant
SMPS, in excess of 400 W
SMPS for LED luminaires
Figure 1. Block diagram
SO
-
16
SO16
$0Y
9))
6
5
4
67$57(5
/(%
4
92/7$*(
5(*8/$725 89/2

9
08/7,3/,(5
«
,QWHUQDO6XSSO\%XV
9ROWDJH
UHIHUHQFHV
9
9
9
9FF
*'
&6
*1'
08/7
,19
3)&B2.
3:0B6723 =&'
'LVDEOH
293
89/2
'LVDEOH 4 6
5
',6$%/(
/B293
89/2
(UURU$PSOLILHU
&203
,GHDOUHFWLILHU
9
9
9
293
/B293
581

212))&RQWURO
6WDUWHU
2))

9
9
'HWHFWRU
=HUR&XUUHQW
212))&RQWURO




0,5525

%8))(5 IURP
&855(17
9 9))
75$&.,1*
%2267
7%2
'(7(&725
0$,16'523
3:0B
/$7&+
/B293
9ELDV
9
'LVDEOH
,
FKDUJH
+96
9
9
9))
6
5
46
5
46
5
4
67$57(5
/(%
4
92/7$*(
5(*8/$725 89/2

9
08/7,3/,(5
«
,QWHUQDO6XSSO\%XV
9ROWDJH
UHIHUHQFHV
9
9
9
9FF
*'
&6
*1'
08/7
,19
3)&B2.
3:0B6723 =&'
'LVDEOH
293
89/2
89/2
'LVDEOH 4 6
5
',6$%/(
/B293
89/2
(UURU$PSOLILHU
&203
,GHDOUHFWLILHU
9
9
9
293
/B293
581

212))&RQWURO
6WDUWHU
2))

9
9
'HWHFWRU
=HUR&XUUHQW
212))&RQWURO




0,5525

%8))(5 IURP
&855(17
9 9))
75$&.,1*
%2267
7%2
'(7(&725
0$,16'523
3:0B
/$7&+
/B293
9ELDV
9
'LVDEOH
,
FKDUJH
+96

9
9
www.st.com
Contents L6563H
2/50 DocID16047 Rev 4
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Typical electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Feedback failure protection (FFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Voltage feedforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5 Tracking boost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.6 Inductor saturation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.7 Power management/housekeeping functions . . . . . . . . . . . . . . . . . . . . . 33
6.8 High voltage start-up generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Application examples and ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.1 SO16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9 Ordering codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DocID16047 Rev 4 3/50
L6563H List of tables
50
List of tables
Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Summary of L6563H idle states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6. SO16 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 7. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 8. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
List of figures L6563H
4/50 DocID16047 Rev 4
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Typical system block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. IC consumption vs. VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. IC consumption vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. VCC Zener voltage vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Start-up and UVLO vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8. Feedback reference vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. E/A output clamp levels vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. UVLO saturation vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. OVP levels vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Inductor saturation threshold vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 13. Vcs clamp vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14. ZCD sink/source capability vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. ZCD clamp level vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 16. TBO clamp vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 17. VVFF - VTBO dropout vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 18. IINV - ITBO current mismatch vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 19. IINV - ITBO mismatch vs. ITBO current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 20. R discharge vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 21. Line drop detection threshold vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. VMULTpk - VVFF dropout vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 23. PFC_OK threshold vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 24. PFC_OK FFD threshold vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 25. PWM_LATCH high saturation vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 26. RUN threshold vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 27. PWM_STOP low saturation vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 28. Multiplier characteristics at VFF = 1 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 29. Multiplier characteristics at VFF = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 30. Multiplier gain vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 31. Gate drive clamp vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 32. Gate drive output saturation vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 33. Delay to output vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 34. Start-up timer period vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. HV start voltage vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 36. VCC restart voltage vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 37. HV breakdown voltage vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 38. Output voltage setting, OVP and FFP functions: internal block diagram . . . . . . . . . . . . . . 24
Figure 39. Voltage feedforward: squarer-divider (1/V2) block diagram and transfer characteristic . . . 26
Figure 40. RFF · CFF as a function of 3rd harmonic distortion introduced in the input current . . . . . . . 27
Figure 41. THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 42. THD optimization: standard TM PFC controller (left side) and L6563H (right side) . . . . . . 29
Figure 43. Tracking boost block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 44. Tracking output voltage vs. input voltage characteristic with TBO . . . . . . . . . . . . . . . . . . . 32
Figure 45. Effect of boost inductor saturation on the MOSFET current and detection method . . . . . . 32
Figure 46. Interface circuits that let dc-dc converter's controller IC drive L6563H in burst mode . . . . 33
Figure 47. Interface circuits that let the L6563H switch on or off a PWM controller. . . . . . . . . . . . . . . 34
Figure 48. Interface circuits for power up sequencing when dc-dc has the SS function . . . . . . . . . . . 34
DocID16047 Rev 4 5/50
L6563H List of figures
50
Figure 49. Interface circuits for actual power-up sequencing (master PFC) . . . . . . . . . . . . . . . . . . . . 34
Figure 50. Brownout protection (master PFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 51. High voltage start-up generator: internal schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 52. Timing diagram: normal power-up and power-down sequences . . . . . . . . . . . . . . . . . . . . 36
Figure 53. High voltage start-up behavior during latch-off protection . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 54. High voltage start-up managing the dc-dc output short-circuit . . . . . . . . . . . . . . . . . . . . . . 38
Figure 55. Demonstration board EVL6563H-100W, wide-range mains: electrical schematic . . . . . . . 39
Figure 56. L6563H 100 W TM PFC evaluation board: compliance to EN61000-3-2 standard . . . . . . 40
Figure 57. L6563H 100 W TM PFC evaluation board: compliance to JEITA-MITI standard . . . . . . . . 40
Figure 58. L6563H 100 W TM PFC evaluation board: input current waveform
at 230-50 Hz - 100 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 59. L6563H 100W TM PFC evaluation board: input current waveform
at 100 V-50 Hz - 100 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 60. 90 W adapter with L6563H, L6599A, SRK2000A demonstration board:
electrical schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 61. 150 W - 12 V adapter with L6563H, L6599A, SRK2000A: electrical schematic . . . . . . . . . 42
Figure 62. EVL6563H -250 W TM PFC demonstration board: electrical schematic . . . . . . . . . . . . . . 43
Figure 63. EVL6599A-90WADP 90 W adapter demonstration board: electrical schematic. . . . . . . . . 44
Figure 64. SO16 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Description L6563H
6/50 DocID16047 Rev 4
1 Description
The L6563H is a current-mode PFC controller operating in transition mode (TM) which
embeds the same features existing in the L6563S with the addition of a high voltage start-up
source. These functions make the IC especially suitable for applications that have to be
compliant with energy saving regulations and where the PFC pre-regulator works as the
master stage.
The highly linear multiplier, along with a special correction circuit that reduces crossover
distortion of the mains current, allows wide-range-mains operation with an extremely low
THD even over a large load range.
The output voltage is controlled by means of a voltage-mode error amplifier and an accurate
(1% at Tj = 25 °C) internal voltage reference. Loop's stability is optimized by the voltage
feedforward function (1/V2 correction), which in this IC uses a proprietary technique that
considerably improves line transient response as well in case of mains both drops and
surges (“bidirectional”).
Additionally, the IC provides the option for tracking boost operation, i.e. the output voltage is
changed tracking the mains voltage.
The device includes disable functions suitable for remote ON/OFF control too.
In addition to an over voltage protection able to keep the output voltage under control during
transient conditions, the IC is provided also with a protection against feedback loop failures
or erroneous settings. Other on-board protection functions allow that brownout conditions
and boost inductor saturation can be safely handled.
An interface with the PWM controller of the DC-DC converter supplied by the PFC pre-
regulator is provided: the purpose is to stop the operation of the converter in case of
anomalous conditions for the PFC stage (feedback loop failure, boost inductor's core
saturation, etc.) and to handle the PFC stage in case of light load for the DC-DC converter,
to make it easier to comply with energy saving regulations (Blue Angel, EnergyStar,
Energy2000, etc.).
The totem-pole output stage, capable of 600 mA source and 800 mA sink current, is suitable
for big MOSFET or IGBT drive. This, combined with the other features and the possibility to
operate with ST's proprietary fixed-off-time control, makes the device an excellent solution
for SMPS up to 400 W that need to be compliant with EN61000-3-2 and JEITA-MITI
standards.
DocID16047 Rev 4 7/50
L6563H Maximum ratings
50
2 Maximum ratings
2.1 Absolute maximum ratings
2.2 Thermal data
Table 1. Absolute maximum ratings
Symbol Pin Parameter Value Unit
VHVS 9 Voltage range (referred to ground) -0.3 to 700 V
IHVS 9 Output current Self-limited IHVS
Vcc 16 IC supply voltage (Icc = 20 mA) Self-limited V
- 1, 3, 7 Max. pin voltage (Ipin =1 mA) Self-limited V
- 2, 4 to 6, 8, 11, 12 Analog inputs and outputs -0.3 to 8 V
IPWM_STOP 11 Max. sink current 3 mA
IZCD 13 Zero current detector max. current -10 (source)
10 (sink) mA
Table 2. Thermal data
Symbol Parameter Value Unit
RthJA Max. thermal resistance, junction to ambient 120 °C/W
Ptot Power dissipation at TA = 50 °C 0.75 W
TJJunction temperature operating range -40 to 150 °C
Tstg Storage temperature -55 to 150 °C
INvE V COMP E MULT I: csl: VFF E TED E PFC_OK |: PWM_LATCH E II 3 GD 3 GND :I ZCD :I RUN ] PWM_STOF' j N.C. :I HVS AM0225AV‘ 8/50 Doch16047 Rev 4
Pin connection L6563H
8/50 DocID16047 Rev 4
3 Pin connection
Figure 2. Pin connection
$0Y
+96
&6
7%2
&203
08/7
9))
3:0B/$7&+
*'
*1'
=&'
3:0B6723
3)&B2.
,19 9FF
581
1&








+96
&6
7%2
&6
7%2
&203
08/7
9))
3:0B/$7&+
*'
*1'
=&'
3:0B6723
3)&B2.
,19 9FF
581
1&








Table 3. Pin description
No. Name Function
1INV
Inverting input of the error amplifier. The information on the output voltage of the PFC pre-
regulator is fed into the pin through a resistor divider.
The pin normally features high impedance but, if the tracking boost function is used, an
internal current generator programmed by TBO (pin 6) is activated. It sinks current from the
pin to change the output voltage so that it tracks the mains voltage.
2COMP
Output of the error amplifier. A compensation network is placed between this pin and INV (pin
1) to achieve stability of the voltage control loop and ensure high power factor and low THD.
To avoid uncontrolled rise of the output voltage at zero load, when the voltage on the pin falls
below 2.4 V the gate driver output is inhibited (burst-mode operation).
3MULT
Mains input to the multiplier. This pin is connected to the rectified mains voltage via a resistor
divider and provides the sinusoidal reference to the current loop. The voltage on this pin is
used also to derive the information on the RMS mains voltage.
4CS
Input to the PWM comparator. The current flowing in the MOSFET is sensed through a
resistor, the resulting voltage is applied to this pin and compared with an internal reference to
determine MOSFET’s turn-off.
A second comparison level at 1.7 V detects abnormal currents (e.g. due to boost inductor
saturation) and, on this occurrence, activates a safety procedure that temporarily stops the
converter and limits the stress of the power components.
5VFF
Second input to the multiplier for 1/V2 function. A capacitor and a parallel resistor must be
connected from the pin to GND. They complete the internal peak-holding circuit that derives
the information on the RMS mains voltage. The voltage at this pin, a dc level equal to the peak
voltage on pin MULT (3), compensates the control loop gain dependence on the mains
voltage. Never connect the pin directly to GND but with a resistor ranging from 100 k
(minimum) to 2 M (maximum).
6TBO
Tracking boost function. This pin provides a buffered VFF voltage. A resistor connected
between this pin and GND defines a current that is sunk from pin INV (1). In this way, the
output voltage is changed proportionally to the mains voltage (tracking boost). If this function
is not used leave this pin open.
DocID16047 Rev 4 9/50
L6563H Pin connection
50
7PFC_OK
PFC pre-regulator output voltage monitoring/disable function. This pin senses the output
voltage of the PFC pre-regulator through a resistor divider and is used for protection
purposes.
If the voltage on the pin exceeds 2.5 V the IC stops switching and restarts as the voltage on
the pin falls below 2.4 V. However, if at the same time the voltage of the INV pin falls below
1.66V, a feedback failure is assumed. In this case the device is latched off and the
PWM_LATCH (8) pin is asserted high. Normal operation can be resumed only by cycling Vcc
bringing its value lower than 6V before to move up to Turn on threshold.
If the voltage on this pin is brought below 0.23 V the IC is shut down. To restart the IC the
voltage on the pin must go above 0.27 V. This can be used as a remote on/off control input.
8PWM_LATCH
Output pin for fault signaling. During normal operation this pin features high impedance. If a
feedback failure is detected (PFC_OK > 2.5 V and INV < 1.66 V) the pin is asserted high.
Normally, this pin is used to stop the operation of the dc-dc converter supplied by the PFC pre-
regulator by invoking a latched disable of its PWM controller. If not used, the pin is left floating.
9HVS
High voltage start-up. The pin, able to withstand 700 V, is to be tied directly to the rectified
mains voltage. A 1 mA internal current source charges the capacitor connected between pin
Vcc (16) and pin GND (14) until the voltage on the pin Vcc reaches the start-up threshold, then
it is shut down. Normally, the generator is re-enabled when the Vcc voltage falls below 6 V to
ensure a low power throughput during short-circuit. Otherwise, when a latched protection is
tripped the generator is re-enabled as Vcc reaches the UVLO threshold to keep the latch
supplied.
10 N.C. Not internally connected. Provision for clearance on the PCB to meet safety requirements.
11 PWM_STOP
Output pin for fault signaling. During normal operation this pin features high impedance. If the
IC is disabled by a voltage below 0.8 V on pin RUN (12) the voltage on the pin is pulled to
ground. Normally, this pin is used to temporarily stop the operation of the dc-dc converter
supplied by the PFC pre-regulator by disabling its PWM controller. A typical usage of this
function is brownout protection in systems where the PFC pre-regulator is the master stage. If
not used, the pin is left floating.
12 RUN
Remote ON/OFF control. A voltage below 0.8 V shuts down (not latched) the IC and brings its
consumption to a considerably lower level. PWM_STOP is asserted low. The IC restarts as
the voltage at the pin goes above 0.88V. Connect this pin to pin VFF (5) either directly or
through a resistor divider to use this function as brownout (AC mains undervoltage) protection.
13 ZCD Boost inductor’s demagnetization sensing input for transition-mode operation. A negative-
going edge triggers MOSFET’s turn-on.
14 GND Ground. Current return for both the signal part of the IC and the gate driver.
15 GD
Gate driver output. The totem pole output stage is able to drive power MOSFET’s and IGBT’s
with a peak current of 600 mA source and 800 mA sink. The high-level voltage of this pin is
clamped at about 12 V to avoid excessive gate voltages.
16 Vcc
Supply voltage of both the signal part of the IC and the gate driver. Sometimes a small bypass
capacitor (0.1 µF typ.) to GND might be useful to get a clean bias voltage for the signal part of
the IC.
Table 3. Pin description (continued)
No. Name Function
PFC PREVREGULATOR Dchc CONVERTER we: Wuldc Iumed on in vase of PFC‘ anomalous nperalinn for safety P’WM : L6563H ? PWM or Resonant f CONTROLLER PFC ran be turned an al ligm load to ease compliance with energy saving regulations, AM0225 10/50 DDC‘D16047 Rev 4
Pin connection L6563H
10/50 DocID16047 Rev 4
Figure 3. Typical system block diagram
$0Y
9
LQDF
9
RXWGF
3:0LVWXUQHGRIILQFDVHRI3)&V
DQRPDORXVRSHUDWLRQIRUVDIHW\
3)&FDQEHWXUQHGRIIDWOLJKW
ORDGWRHDVHFRPSOLDQFHZLWK
HQHUJ\VDYLQJUHJXODWLRQV
/+
3:0RU
5HVRQDQW
&21752//(5
3)&35(5(*8/$725 '&'&&219(57(5
9
LQDF
9
RXWGF
3:0LVWXUQHGRIILQFDVHRI3)&V
DQRPDORXVRSHUDWLRQIRUVDIHW\
3)&FDQEHWXUQHGRIIDWOLJKW
ORDGWRHDVHFRPSOLDQFHZLWK
HQHUJ\VDYLQJUHJXODWLRQV
/+
3:0RU
5HVRQDQW
&21752//(5
3)&35(5(*8/$725 '&'&&219(57(5
DocID16047 Rev 4 11/50
L6563H Electrical characteristics
50
4 Electrical characteristics
TJ = -25 to 125 °C, VCC = 12 V, CO = 1 nF between pin GD and GND, CFF = 1 µF and
RFF = 1 M between pin VFF and GND; unless otherwise specified.
Table 4. Electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
Supply voltage
Vcc Operating range After turn-on 10.3 - 22.5 V
VccOn Turn-on threshold (1) 11 12 13 V
VccOff Turn-off threshold (1) 8.7 9.5 10.3 V
Vccrestart Vcc for resuming from latch OVP latched 5 6 7 V
Hys Hysteresis - 2.3 - 2.7 V
VZZener voltage Icc = 20 mA 22.5 25 28 V
Supply current
Istart-up Start-up current Before turn-on, Vcc = 10 V - 90 150 µA
IqQuiescent current After turn-on, VMULT = 1 V - 4 5 mA
ICC Operating supply current At 70 kHz - 5 6.0 mA
Iqdis Idle state quiescent current
VPFC_OK > VPFC_OK_S AND
VINV < VPFC_OK – VFFD
- 180 280 µA
VPFC_OK < VPFC_OK_D OR
VRUN < VDIS
-1.52.2mA
IqQuiescent current VPFC_OK > VPFC_OK_S OR
VCOMP < 2.3 V -2.23mA
High voltage start-up generator
VHV Breakdown voltage IHV < 100 µA 700 - - V
VHVstart Start voltage IVcc < 100 µA 65 80 100 V
Icharge Vcc charge current VHV > VHvstart, Vcc > 3 V 0.55 0.85 1 mA
IHV, ON ON-state current
VHV > VHvstart, Vcc > 3 V - - 1.6
mA
VHV > VHvstart, Vcc = 0 - - 0.8
IHV, OFF OFF-state leakage current VHV = 400 V - - 40 µA
VCCrestart Vcc restart voltage
Vcc falling 5 6 7
V
IC latched off (1) 8.7 9.5 10.3
Multiplier input
IMULT Input bias current VMULT = 0 to 3 V - -0.2 -1 µA
VMULT Linear operation range - 0 to 3 - - V
VCLAMP Internal clamp level IMULT = 1 mA 9 9.5 - V
Electrical characteristics L6563H
12/50 DocID16047 Rev 4
Vcs
VMULT
Output max. slope VMULT =0 to 0.4 V, VVFF = 0.8 V
VCOMP = Upper clamp 2.2 2.34 - V/V
KMGain(2) VMULT = 1 V, VCOMP = 4 V 0.375 0.45 0.525 1/V
Error amplifier
VINV Voltage feedback input threshold
TJ = 25 °C 2.475 2.5 2.525
V
10.3 V < Vcc < 22.5 V (3) 2.455 - 2.545
Line regulation Vcc = 10.3 V to 22.5 V - 2 5 mV
IINV Input bias current TBO open, VINV = 0 to 4 V - -0.2 -1 µA
VINVCLAMP Internal clamp level IINV = 1 mA 8 9 - V
Gv Voltage gain Open loop 60 80 - dB
GB Gain-bandwidth product - - 1 - MHz
ICOMP
Source current VCOMP = 4 V, VINV = 2.4 V 2 4 - mA
Sink current VCOMP = 4 V, VINV = 2.6 V 2.5 4.5 - mA
VCOMP
Upper clamp voltage ISOURCE = 0.5 mA 5.7 6.2 6.7
VBurst-mode voltage (3) 2.3 2.4 2.5
Lower clamp voltage ISINK = 0.5 mA (3) 2.1 2.25 2.4
Current sense comparator
ICS Input bias current VCS = 0 - - 1 µA
tLEB Leading edge blanking - 100 150 250 ns
td(H-L) Delay to output - 100 200 300 ns
VCSclamp Current sense reference clamp VCOMP = upper clamp,
VMULT =1 V VVFF = 1 V 1.0 1.08 1.16 V
Vcsofst Current sense offset
VMULT = 0, VVFF = 3 V - 40 70
mV
VMULT = 3 V, VVFF = 3 V - 20 -
Boost inductor saturation detector
VCS_th Threshold on current sense (3) 1.6 1.7 1.8 V
IINV E/A input pull-up current After VCS > VCS_th, before restarting 7 10 13 µA
PFC_OK functions
IPFC_OK Input bias current VPFC_OK = 0 to 2.6 V - -0.1 -1 µA
VPFC_OK_C Clamp voltage IPFC_OK = 1 mA 9 9.5 - V
VPFC_OK_S OVP threshold (1) voltage rising 2.435 2.5 2.565 V
VPFC_OK_R Restart threshold after OVP (1) voltage falling 2.34 2.4 2.46 V
VPFC_OK_D Disable threshold (1) voltage falling 0.12 - 0.35 V
VPFC_OK_D Disable threshold (1) voltage falling TJ = 25 °C 0.17 0.23 0.29 V
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
DocID16047 Rev 4 13/50
L6563H Electrical characteristics
50
VPFC_OK_E Enable threshold (1) voltage rising 0.15 - 0.38 V
VPFC_OK_E Enable threshold (1) voltage rising Tj = 25 °C 0.21 0.27 0.32 V
VFFD
Feedback failure detection
threshold (VINV falling) VPFC_OK = VPFC_OK_S 1.61 1.66 1.71 mV
Zero current detector
VZCDH Upper clamp voltage IZCD = 2.5 mA 5.0 5.7 - V
VZCDL Lower clamp voltage IZCD = - 2.5 mA -0.3 0 0.3 V
VZCDA
Arming voltage
(positive-going edge) -1.11.41.9V
VZCDT
Triggering voltage
(negative-going edge) -0.50.70.9V
IZCDb Input bias current VZCD = 1 to 4.5 V - - 1 µA
IZCDsrc Source current capability - -2.5 -4 - mA
IZCDsnk Sink current capability - 2.5 5 - mA
Tracking boost function
VDropout voltage VVFF-VTBO ITBO = 0.2 mA -20 - 20 mV
ITBO Linear operation - 0 - 0.2 mA
IINV-ITBO current mismatch ITBO = 25 µA to 0.2 mA -5.5 - 1.0 %
-I
INV-ITBO current mismatch ITBO = 25 µA to 0.2 mA
TJ = 25 °C -4.0 - +0 %
VTBOclamp Clamp voltage (3) VVFF = 4 V 2.9 3 3.1 V
ITBO_Pull Pull-up current VTBO = 1 V
VFF = VMULT = 0 V --2A
PWM_STOP
Ileak High level leakage current VPWM_STOP = Vcc - - 1 µA
VLLow level IPWM_STOP = 0.5 mA - - 1 V
RUN function
IRUN Input bias current VRUN = 0 to 3 V - - -1 µA
VDIS Disable threshold (3) voltage falling 0.745 0.8 0.855 V
VEN Enable threshold (3) voltage rising 0.845 0.88 0.915 V
Start-up timer
tSTART_DEL Start-up delay First cycle after wake-up 25 50 75 µs
tSTART Timer period -75 150 300
µs
Restart after VCS > VCS_th 150 300 600
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical characteristics L6563H
14/50 DocID16047 Rev 4
Voltage feedforward
VVFF Linear operation range - 0.8 - 3 V
V Dropout VMULTpk-VVFF
Vcc < VccOn - - 800
mV
Vcc > or = to VccOn --20
VVFF Line drop detection threshold Below peak value 40 70 100 mV
VVFF Line drop detection threshold Below peak value
TJ = 25 °C 50 70 90 mV
RDISCH Internal discharge resistor
TJ = 25 °C 7.5 10 12.5
k
-5-20
VVFF Linear operation range - 0.8 - 3 V
PWM_LATCH
Ileak Low level leakage current VPWM_LATCH = 0 - - -1 µA
VHHigh level IPWM_LATCH = -0.5 mA 4.5 - - V
VHHigh level IPWM_LATCH = -0.25 mA
Vcc = VccOff
2.5 - - V
VHHigh level IPWM_LATCH = -0.25 mA
Vcc = VccOff TJ = 25 °C 2.8 - - V
Gate driver
VOL Output low voltage Isink = 100 mA - 0.6 1.2 V
VOH Output high voltage Isource = 5 mA 9.8 10.3 - V
Isrcpk Peak source current - -0.6 - - A
Isnkpk Peak sink current - 0.8 - - A
tfVoltage fall time - - 30 60 ns
trVoltage rise time - - 45 110 ns
VOclamp Output clamp voltage Isource = 5 mA; Vcc = 20 V 10 12 15 V
UVLO saturation Vcc= 0 to VCCon, Isink = 2 mA - - 1.1 V
1. Parameters tracking each other
2. The multiplier output is given by:
3. Parameters tracking each other
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit

2
VFF
V
5.2
COMP
V
MULT
V
KV
cs
VMCS_Ofst
Figure 4. IC consumption vs. V Figure 5. IC consumption vs. T Figure 6 . V c Zener voltage vs. T Figure 7. Start-up and UVLO vs. T
DocID16047 Rev 4 15/50
L6563H Typical electrical performance
50
5 Typical electrical performance
Figure 4. IC consumption vs. VCC Figure 5. IC consumption vs. TJ
0.001
0.01
0.1
1
10
10 0
0 5 10 1 5 2 0 25 3 0
Vc c [V ]
Icc [mA]
Vc c O FF
Vc c O N
Co=1nF
f =70kHz
Tj = 25°C
0.01
0.1
1
10
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
Ic current (mA)
Op e r a tin g
Qu ie sc e n t
Disabled or
du r i n g OV P
Latched off
Before Start up
VCC=1 2V
Co = 1nF
f =70kHz
Figure 6. VCC Zener voltage vs. TJFigure 7. Start-up and UVLO vs. TJ
22
23
24
25
26
27
28
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
6
7
8
9
10
11
12
13
-50 -25 0 25 50 75 100 125 150 175
Tj ( C)
V
-
N
VCC-OFF
Figure 8. Feedback reference vs. T Figure 9. EIA output clamp levels vs. T Figure 10. UVLO saluralion vs. T Figure 11. OVF levels vs. T
Typical electrical performance L6563H
16/50 DocID16047 Rev 4
Figure 8. Feedback reference vs. TJFigure 9. E/A output clamp levels vs. TJ
2. 4
2.45
2. 5
2.55
2. 6
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
pi n INV (V )
VC C = 1 2V
0
1
2
3
4
5
6
7
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
VCOMP (V)
U
per
C
la m p
L
ower Clamp
V
CC = 12V
Figure 10. UVLO saturation vs. TJFigure 11. OVP levels vs. TJ
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
VCC = 0 V
2.36
2.38
2.4
2.42
2.44
2.46
2.48
2.5
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
PFC_OK levels (V)
OVP Th
Resta rt Th
Figure 12. Inductor saturation threshold vs. T Figure 13. Vcs clamp vs. T Figure 14. ZCD sink/source capabiliiy vs. T Figure 15. ZCD clamp level vs. T
DocID16047 Rev 4 17/50
L6563H Typical electrical performance
50
Figure 12. Inductor saturation threshold vs. TJFigure 13. Vcs clamp vs. TJ
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
-50 -25 0 25 50 75 100 125 150 175
Tj (C )
CS pin (V )
1
1.1
1.2
1.3
1.4
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
VC Sx (V )
VCC = 12 V
VCOMP =Upper clamp
Figure 14. ZCD sink/source capability vs. TJFigure 15. ZCD clamp level vs. TJ
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
IZCDsrc (mA
)
VCC = 12V
Source current
Si nk curren t
-1
0
1
2
3
4
5
6
7
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V ZCD pin (V )
VC C = 1 2V
Iz cd =
±2.5mV
Upper Clamp
Lower Cl amp
Figure 16. T30 clamp vs. T Figure 17 . V F - V BO dropout vs. T Figure 18. I -l current mismatch vs. T Figure 19. I - I mismaich vs. I BO curreni
Typical electrical performance L6563H
18/50 DocID16047 Rev 4
Figure 16. TBO clamp vs. TJFigure 17. VVFF - VTBO dropout vs. TJ
2.5
2.75
3
3.25
3.5
-50 -25 0 25 50 75 100 125 150 175
Tj ( C )
V
-5
-4
-3
-2
-1
0
1
2
3
4
5
-50-250255075100125150175
Tj (C)
mV
Figure 18. IINV - ITBO current mismatch vs. TJFigure 19. IINV - ITBO mismatch vs. ITBO current
-4
-3 .5
-3
-2 .5
-2
-1 .5
-1
-0 .5
0
-50 -25 0 25 50 75 100 125 150 175
Tj ( C)
10 0 *{I(IN V) -I( TBO) }/I( TBO) [ %
]
VC C = 12 V
ITB O = 2 5uA
ITBO = 200uA
-3
-2.8
-2.6
-2.4
-2.2
-2
-1.8
-1.6
0 100 200 300 400 500 600
I( TB O)
100*{I(I NV )-I(TBO)}/I (TBO) [ %
]
VCC = 1 2V
Tj = 25 ° C
Figure 20. R discharge vs. T Figure 21. Line drop deieciion threshold vs. T Figure 22. V k - V F dropout vs. T Figure 23. PFC_OK ihreshold vs. T
DocID16047 Rev 4 19/50
L6563H Typical electrical performance
50
Figure 20. R discharge vs. TJFigure 21. Line drop detection threshold vs. TJ
0
2
4
6
8
10
12
14
16
18
20
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
kOhm
0
10
20
30
40
50
60
70
80
90
-50 -25 0 25 50 75 100 125 150 175
Tj (C )
mV
Figure 22. VMULTpk - VVFF dropout vs. TJFigure 23. PFC_OK threshold vs. TJ
-2
-1.5
-1
-0.5
0
0. 5
1
1. 5
2
-50 -25 0 25 50 75 100 125 150 175
Tj (C )
(m V)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
Th (V )
ON
OFF
Figure 24. PFC_OK FFD threshold vs. T Figure 25. FWM_LATCH high saiuration vs. T Figure 26. RUN threshold vs. T Figure 27. FWM_STOP low saluraiion vs. T
Typical electrical performance L6563H
20/50 DocID16047 Rev 4
Figure 24. PFC_OK FFD threshold vs. TJFigure 25. PWM_LATCH high saturation vs. TJ
1.4
1.5
1.6
1.7
1.8
1.9
2
-50-25 0 255075100125150175
Tj (C )
VFFD Th (V )
4
5
6
7
8
9
10
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
VCC = 1 2 V
Isource =500uA
Isource =250uA
Figure 26. RUN threshold vs. TJFigure 27. PWM_STOP low saturation vs. TJ
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
VCC = 1 2V
O
N
O
FF
0
0.05
0.1
0.15
0.2
0.25
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
VC C = 12V
Isink = 0.5mA
Figure 29. Multiplier characteristics Figure 31. Gate drive clamp vs. T Figure 28. Multiplier characteristics Figure 30. Multiplier gain vs. T
DocID16047 Rev 4 21/50
L6563H Typical electrical performance
50
Figure 28. Multiplier characteristics
at VFF = 1 V
Figure 29. Multiplier characteristics
at VFF = 3 V
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
0 0.1 0.2 0.3 0. 4 0.5 0.6 0.7 0.8 0.9 1 1.1
VM UL T ( V )
V
CS (V)
4.5 V
3.5 V
Up p e r volt a ge cl am p
3.0
2.6 V
5.0V
4. 0V
5.5
VCO MP
0
100
200
300
400
500
600
700
0 0.5 1 1.5 2 2.5 3 3.5
V
MULT (V )
VCS (mV)
2.6V
3.0V
4.5V
4.0V
3.5V
5.0V
5.5V
Upper vo ltage
VCOMP
Figure 30. Multiplier gain vs. TJFigure 31. Gate drive clamp vs. TJ
0. 2
0. 3
0. 4
0. 5
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
Gai n (1/V )
VC C = 12V
VC OMP = 4 V
VMU LT = VFF = 1 V
12.65
12.7
12.75
12.8
12.85
12.9
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
VCC = 20V
Figure 32. Gate drive output saturation vs. T Figure 33. Delay to output vs. T Figure 34. Start-up timer period vs. T Figure 35. HV start voltage vs. T
Typical electrical performance L6563H
22/50 DocID16047 Rev 4
Figure 32. Gate drive output saturation vs. TJFigure 33. Delay to output vs. TJ
0
2
4
6
8
10
12
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
Low level
High level
50
100
150
200
250
300
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
T D (H - L ) (n s)
VCC = 12V
Figure 34. Start-up timer period vs. TJFigure 35. HV start voltage vs. TJ
0
50
100
150
200
250
300
350
400
450
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
Ti m e (us)
Fi r s t C i c l e
Timer
Aft e r OC P
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125 150 175
Tj (C )
V
Figure 36. V restart voltage vs. T Figure 37. HV breakdown voltage vs. T \
DocID16047 Rev 4 23/50
L6563H Typical electrical performance
50
Figure 36. VCC restart voltage vs. TJFigure 37. HV breakdown voltage vs. TJ
0
2
4
6
8
10
12
14
-50 -25 0 25 50 75 100 125 150 175
Tj (C)
V
fa lling
IC C
500
550
600
650
700
750
800
-50 -25 0 25 50 75 100 125 150 175
Tj (C )
V
{if H
Application information L6563H
24/50 DocID16047 Rev 4
6 Application information
6.1 Overvoltage protection
Normally, the voltage control loop keeps the output voltage Vo of the PFC pre-regulator
close to its nominal value, set by the ratio of the resistors R1 and R2 of the output divider.
A pin of the device (PFC_OK) has been dedicated to monitor the output voltage with a
separate resistor divider (R3 high, R4 low, see Figure 38). This divider is selected so that
the voltage at the pin reaches 2.5 V if the output voltage exceeds a preset value, usually
larger than the maximum Vo that can be expected.
Example: VO = 400 V, VOX = 434 V. Select: R3 = 8.8 M; then: R4 = 8.8 M ·2.5 /
(434 - 2.5) = 51 k.
When this function is triggered, the gate drive activity is immediately stopped until the
voltage on the pin PFC_OK drops below 2.4 V. Notice that R1, R2, R3 and R4 can be
selected without any constraints. The unique criterion is that both dividers have to sink a
current from the output bus which needs to be significantly higher than the bias current of
both INV and PFC_OK pins.
Figure 38. Output voltage setting, OVP and FFP functions: internal block diagram
$0Y
9
9
9
,19
'LVDEOH
293
(UURU$PSOLILHU
&203
9
9
/B293
3)&B2.
9RXW
)UHTXHQF\
FRPSHQVDWLRQ
5D
5E
5
5D
5E
5
5
5
9
9
9
9
,19
'LVDEOH
293
(UURU$PSOLILHU
&203
9
9
/B293
3)&B2.
9RXW
)UHTXHQF\
FRPSHQVDWLRQ
5D
5E
5
5D
5E
5
5
5
9
DocID16047 Rev 4 25/50
L6563H Application information
50
6.2 Feedback failure protection (FFP)
The OVP function above described handles “normal” over voltage conditions, i.e. those
resulting from an abrupt load/line change or occurring at start-up. In case the overvoltage is
generated by a feedback disconnection, for instance when the upper resistor of the output
divider (R1) fails open, comparator detects the voltage at pin INV. If the voltage is lower than
1.66 V and the OVP is active, the FFP is triggered, the gate drive activity is immediately
stopped, the device is shut down, its quiescent consumption is reduced below 180 µA and
the condition is latched as long as the supply voltage of the IC is above the UVLO threshold.
At the same time the pin PWM_LATCH is asserted high. PWM_LATCH is an open source
output able to deliver 2.8 V minimum with 0.25 mA load, intended for tripping a latched
shutdown function of the PWM controller IC in the cascaded dc-dc converter, so that the
entire unit is latched off. To restart the system it is necessary to recycle the input power, so
that the Vcc voltage of both the L6563H goes below 6V and that one of the PWM controller
goes below its UVLO threshold.
The pin PFC_OK doubles its function as a not-latched IC disable: a voltage below 0.23V
shutdown the IC, reducing its consumption below 2 mA. In this case both PWM_STOP and
PWM_LATCH keep their high impedance status. To restart the IC simply let the voltage at
the pin go above 0.27 V.
Note that these functions offer a complete protection against not only feedback loop failures
or erroneous settings, but also against a failure of the protection itself. Either resistor of the
PFC_OK divider failing short or open or a PFC_OK pin floating results in shutting down the
IC and stopping the pre-regulator.
6.3 Voltage feedforward
The power stage gain of PFC pre-regulators varies with the square of the RMS input
voltage. So does the crossover frequency fc of the overall open-loop gain because the gain
has a single pole characteristic. This leads to large trade-offs in the design.
For example, setting the gain of the error amplifier to get fc = 20 Hz at 264 Vac means
having fc = 4 Hz at 88 Vac, resulting in a sluggish control dynamics. Additionally, the slow
control loop causes large transient current flow during rapid line or load changes that are
limited by the dynamics of the multiplier output. This limit is considered when selecting the
sense resistor to let the full load power pass under minimum line voltage conditions, with
some margin. But a fixed current limit allows excessive power input at high line, whereas a
fixed power limit requires the current limit to vary inversely with the line voltage.
Voltage Feedforward can compensate for the gain variation with the line voltage and allow
minimizing all of the above-mentioned issues. It consists of deriving a voltage proportional to
the input RMS voltage, feeding this voltage into a squarer/divider circuit (1/V2 corrector) and
providing the resulting signal to the multiplier that generates the current reference for the
inner current control loop (see Figure 39).
W2 a
Application information L6563H
26/50 DocID16047 Rev 4
Figure 39. Voltage feedforward: squarer-divider (1/V2) block diagram and transfer characteristic
In this way a change of the line voltage causes an inversely proportional change of the half
sine amplitude at the output of the multiplier (if the line voltage doubles the amplitude of the
multiplier output is halved and vice versa) so that the current reference is adapted to the
new operating conditions with (ideally) no need for invoking the slow dynamics of the error
amplifier. Additionally, the loop gain is constant throughout the input voltage range, which
improves significantly dynamic behavior at low line and simplifies loop design.
Actually, deriving a voltage proportional to the RMS line voltage implies a form of integration,
which has its own time constant. If it is too small the voltage generated is affected by a
considerable amount of ripple at twice the mains frequency that causes distortion of the
current reference (resulting in high THD and poor PF); if it is too large there is a
considerable delay in setting the right amount of feedforward, resulting in excessive
overshoot and undershoot of the pre-regulator's output voltage in response to large line
voltage changes. Clearly a trade-off was required.
The L6563H realizes a NEW voltage feed forward that, with a technique that makes use of
just two external parts, strongly minimizes this time constant trade-off issue whichever
voltage change occurs on the mains, both surges and drops. A capacitor CFF and a resistor
RFF, both connected from the pin VFF (#5) to ground, complete an internal peak-holding
circuit that provides a DC voltage equal to the peak of the rectified sine wave applied on pin
MULT (#3). In this way, in case of sudden line voltage rise, CFF is rapidly charged through
the low impedance of the internal diode; in case of line voltage drop, an internal “mains
drop” detector enables a low impedance switch which suddenly discharges CFF avoiding
long settling time before reaching the new voltage level. The discharge of CFF is stopped as
its voltage equals the voltage on pin MULT or if the voltage on pin RUN (in case it is
connected to VFF) falls below 0.88V, to prevent the “Brownout protection” function from
being improperly activated (see “Power management/housekeeping functions” section).
As a result of the VFF pin functionality, an acceptably low steady-state ripple and low current
distortion can be achieved with a limited undershoot or overshoot on the pre-regulator's
output.
$0Y
08/7
5HFWLILHGPDLQV
LGHDOGLRGH
FXUUHQW
UHIHUHQFH
9FV[
9
9))
&)) 5))
($RXWSXW
9
&203
9
08/7,3/,(5
/+
'(7(&725
0$,16'523



9
))
9
08/7
9FV[

9
&203
9
$FWXDO
,GHDO
08/7
5HFWLILHGPDLQV
LGHDOGLRGH
FXUUHQW
UHIHUHQFH
9FV[
9
9))
&)) 5))
($RXWSXW
9
&203
9
08/7,3/,(5
/+
'(7(&725
0$,16'523
08/7
5HFWLILHGPDLQV
LGHDOGLRGH
FXUUHQW
UHIHUHQFH
9FV[
9
9))
&)) 5))
($RXWSXW
9
&203
9
08/7,3/,(5
/+
'(7(&725
0$,16'523



9
))
9
08/7
9FV[

9
&203
9
$FWXDO
,GHDO



9
))
9
08/7
9FV[

9
&203
9
$FWXDO
,GHDO
DocID16047 Rev 4 27/50
L6563H Application information
50
The twice-mains-frequency (2 fL) ripple appearing across CFF is triangular with a peak-to-
peak amplitude that, with good approximation, is given by:
Equation 1
where fL is the line frequency. The amount of 3rd harmonic distortion introduced by this
ripple, related to the amplitude of its 2fL component, is:
Equation 2
Figure 40 shows a diagram that helps choose the time constant RFF·CFF based on the
amount of maximum desired 3rd harmonic distortion.
Note that there is a minimum value for the time constant RFF·CFF below which improper
activation of the VFF fast discharge may occur. In fact, the twice-mains-frequency ripple
across CFF under steady state conditions must be lower than the minimum line drop
detection threshold (VVFF_min = 40 mV). Therefore:
Equation 3
Always connect RFF and CFF to the pin, the IC will not work properly if the pin is either left
floating or connected directly to ground.
Figure 40. RFF · CFF as a function of 3rd harmonic distortion introduced in the input
current
FFFFL
MULTpk
FF CRf41
V2
V
FFFFL
3CRf2
100
%D
min_L
min_VFF
max_MULTpk
FFFF f4
1
V
V
2
CR
D %
3
0.1 1 10
0.01
0.1
1
10
f = 50 Hz
L
f = 60 Hz
L
R · C [s]
FFFF
Application information L6563H
28/50 DocID16047 Rev 4
6.4 THD optimizer circuit
The L6563H is provided with a special circuit that reduces the conduction dead-angle
occurring to the AC input current near the zero-crossings of the line voltage (crossover
distortion). In this way the THD (total harmonic distortion) of the current is considerably
reduced.
A major cause of this distortion is the inability of the system to transfer energy effectively
when the instantaneous line voltage is very low. This effect is magnified by the high-
frequency filter capacitor placed after the bridge rectifier, which retains some residual
voltage that causes the diodes of the bridge rectifier to be reverse-biased and the input
current flow to temporarily stop.
To overcome this issue the device forces the PFC pre-regulator to process more energy
near the line voltage zero-crossings as compared to that commanded by the control loop.
This results in both minimizing the time interval where energy transfer is lacking and fully
discharging the high-frequency filter capacitor after the bridge.
Figure 41 shows the internal block diagram of the THD optimizer circuit.
Figure 41. THD optimizer circuit
$0Y
08/7
&203
W
#9DF
#9DF!9DF
W
W
WR3:0
FRPSDUDWRU
08/7,3/,(5
2))6(7
*(1(5$725
W
9))
9
W
W
08/7
&203
W
#9DF
#9DF!9DF
W
W
WR3:0
FRPSDUDWRU
08/7,3/,(5
2))6(7
*(1(5$725
W
9))
9
W
W
08/7
&203
W
#9DF
#9DF!9DF
W
W
WR3:0
FRPSDUDWRU
08/7,3/,(508/7,3/,(5
2))6(7
*(1(5$725
2))6(7
*(1(5$725
W
9))
9
9
W
W
DocID16047 Rev 4 29/50
L6563H Application information
50
Figure 42. THD optimization: standard TM PFC controller (left side) and L6563H (right side)
Essentially, the circuit artificially increases the ON-time of the power switch with a positive
offset added to the output of the multiplier in the proximity of the line voltage zero-crossings.
This offset is reduced as the instantaneous line voltage increases, so that it becomes
negligible as the line voltage moves toward the top of the sinusoid. Furthermore the offset is
modulated by the voltage on the VFF pin (see “Voltage Feedforward” section) so as to have
little offset at low line, where energy transfer at zero crossings is typically quite good, and a
larger offset at high line where the energy transfer gets worse.
The effect of the circuit is shown in Figure 42, where the key waveforms of a standard TM
PFC controller are compared to those of this chip.
To take maximum benefit from the THD optimizer circuit, the high-frequency filter capacitor
after the bridge rectifier should be minimized, compatibly with EMI filtering needs. A large
capacitance, in fact, introduces a conduction dead-angle of the AC input current in itself -
even with an ideal energy transfer by the PFC pre-regulator - thus reducing the
effectiveness of the optimizer circuit.
6.5 Tracking boost function
In some applications it may be advantageous to regulate the output voltage of the PFC pre-
regulator so that it tracks the RMS input voltage rather than at a fixed value like in
conventional boost pre-regulators. This is commonly referred to as “tracking boost” or
“follower boost” approach.
With the L6563H this can be realized by connecting a resistor (RT) between the TBO pin
and ground. The TBO pin presents a DC level equal to the peak of the MULT pin voltage
and is then representative of the mains RMS voltage. The resistor defines a current, equal
Ima ins
Vdrain
Imains
Vdrain
Input current Input current
MOSFET's drain voltage M OSFE T's dra i n vol t age
Rectifie d mains voltage Rec tified main s volt age
Input current Input current
Application information L6563H
30/50 DocID16047 Rev 4
to V(TBO)/RT, that is internally 1:1 mirrored and sunk from pin INV (#1) input of the
L6563H's error amplifier. In this way, when the mains voltage increases the voltage at TBO
pin increases as well and so does the current flowing through the resistor connected
between TBO and GND. Then a larger current is sunk by INV pin and the output voltage of
the PFC pre-regulator is forced to get higher. Obviously, the output voltage moves in the
opposite direction if the input voltage decreases.
To avoid undesired output voltage rise should the mains voltage exceed the maximum
specified value, the voltage at the TBO pin is clamped at 3V. By properly selecting the
multiplier bias it is possible to set the maximum input voltage above which input-to-output
tracking ends and the output voltage becomes constant. If this function is not used, leave
the pin open: the device regulates a fixed output voltage.
Starting from the following data:
Vin1 = minimum specified input RMS voltage;
Vin2 = maximum specified input RMS voltage;
Vo1 = regulated output voltage at Vin = Vin1;
Vo2 = regulated output voltage at Vin = Vin2;
Vox = absolute maximum limit for the regulated output voltage;
to set the output voltage at the desired values use the following design procedure:
1. Determine the input RMS voltage Vinclamp that produces Vo = Vox:
Equation 4
and choose a value Vinx such that Vin2 Vinx < Vinclamp. This results in a limitation of
the output voltage range below Vox (it is equal Vox if one chooses Vinx = Vinclamp)
2. Determine the divider ratio of the MULT pin (#3) bias:
Equation 5
and check that at minimum mains voltage Vin1 the peak voltage on pin 3 is greater
than 0.65 V.
3. Determine R1, the upper resistor of the output divider, for instance 3 M.
1
12
2
2
12
1
clamp Vin
VoVo
VoVox
Vin
VoVo
VoVox
Vin
x
Vin2
3
k
222222222
DocID16047 Rev 4 31/50
L6563H Application information
50
4. Calculate the lower resistor R2 of the output divider and the adjustment resistor RT:
Equation 6
5. Check that the maximum current sourced by the TBO pin (#6) does not exceed the
maximum specified (0.2 mA):
Equation 7
Figure 43 shows the internal block diagram of the tracking boost function.
Figure 43. Tracking boost block

12
12
T
1221
12
VoVo
VinVin
1Rk2R
Vin5.2VoVin5.2Vo
VinVin
1R5.22R
3
T
maxTBO 102.0
R
3
I
$0Y
9
,19 (UURU$PSOLILHU
&203

0,5525

%8))(5 IURP
&855(17
9
9))
75$&.,1*
%2267
7%2
WR0XOWLSOLHU
9
287
57
,7%2
,7%2
55
9
,19 (UURU$PSOLILHU
&203

0,5525

%8))(5 IURP
&855(17
9
9))
75$&.,1*
%2267
7%2
WR0XOWLSOLHU
9
287
57
,7%2
,7%2
55
>3 Vcs V05 V05 m 1,7V' 1.7V 1,7v , Muttiplier ML Mulllpllet A‘L Multiplier Output ' Output output > < tdetay="" 1=""> 4 Tdelay ‘ Taetay ‘ Inductor not saturaung \nductor sltghtty saturating Inductor saturallng hard £17
Application information L6563H
32/50 DocID16047 Rev 4
Figure 44. Tracking output voltage vs. input voltage characteristic with TBO
6.6 Inductor saturation detection
Boost inductor's hard saturation may be a fatal event for a PFC pre-regulator: the current
up-slope becomes so large (50-100 times steeper, see Figure 45) that during the current
sense propagation delay the current may reach abnormally high values. The voltage drop
caused by this abnormal current on the sense resistor reduces the gate-to-source voltage,
so that the MOSFET may work in the active region and dissipate a huge amount of power,
which leads to a catastrophic failure after few switching cycles.
However, in some applications such as ac-dc adapters, where the PFC pre-regulator is
turned off at light load for energy saving reasons, even a well-designed boost inductor may
occasionally slightly saturate when the PFC stage is restarted because of a larger load
demand. This happens when the restart occurs at an unfavorable line voltage phase, i.e.
when the output voltage is significantly below the rectified peak voltage. As a result, in the
boost inductor the inrush current coming from the bridge rectifier adds up to the switched
current and, furthermore, there is little or no voltage available for demagnetization.
To cope with a saturated inductor, the L6563H is provided with a second comparator on the
current sense pin (CS, pin 4) that stops the IC if the voltage, normally limited within 1.1 V,
exceeds 1.7 V. After that, the IC attempts to restart by the internal starter circuitry; the starter
repetition time is twice the nominal value to guarantee lower stress for the inductor and
boost diode. Hence, the system safety is considerably increased.
Figure 45. Effect of boost inductor saturation on the MOSFET current and detection method
$0Y
    





9R
9R 9LQ
9LQ9LQ[
9LQ
9LQ
9R[
9R
    





9R
9R
9R 9LQ
9LQ
9LQ9LQ[
9LQ[
9LQ
9LQ
9LQ
9R[
9R[
9R
9R
AMomm
DocID16047 Rev 4 33/50
L6563H Application information
50
6.7 Power management/housekeeping functions
A special feature of this IC is that it facilitates the implementation of the “housekeeping”
circuitry needed to co-ordinate the operation of the PFC stage to that of the cascaded DC-
DC converter. The functions realized by the housekeeping circuitry ensure that transient
conditions like power-up or power down sequencing or failures of either power stage be
properly handled.
This device provides some pins to do that. One communication line between the IC and the
PWM controller of the cascaded dc-dc converter is the pin PWM_LATCH (Figure 47b),
which is normally open (high impedance) when the PFC works properly, and goes high if it
loses control of the output voltage (because of a feedback loop disconnection) with the aim
of latching off the PWM controller of the cascaded dc-dc converter as well (see “Feedback
failure protection” section for more details).
A second communication line can be established via the disable function included in the
PFC_OK pin (see “Feedback failure protection” section for more details). Typically this line
is used to allow the PWM controller of the cascaded dc-dc converter to drive in burst mode
operation the L6563H in case of light load and to minimize the no-load input consumption.
Interface circuits like those are shown in Figure 46.
Figure 46. Interface circuits that let dc-dc converter's controller IC drive L6563H in
burst mode
The third communication line is the pin PWM_STOP (#11), which works in conjunction with
the pin RUN (#12). The purpose of the PWM_STOP pin is to inhibit the PWM activity of both
the PFC stage and the cascaded dc-dc converter. The pin is an open collector, normally
open, that goes low if the device is disabled by a voltage lower than 0.8 V on the RUN pin.
The pin goes again open if the voltage on pin RUN exceeds 0.88 V. It is important to point
out that this function works correctly in systems where the PFC stage is the master and the
cascaded dc-dc converter is the slave or, in other words, where the PFC stage starts first,
powers both controllers and enables/disables the operation of the dc-dc stage. The pin RUN
can be used to start and stop the main converter. In the simplest case, to enable/disable the
PWM controller the pin PWM_STOP can be connected to the output of the error amplifier
(Figure 47a).
$0Y
/$
3)&B6723
/+
581 
3)&B2.
/
3)&B6723
/+
581 
3)&B2.
/$
3)&B6723
/+
581 
3)&B2.
/$
3)&B6723
/+
581 
3)&B2.
/
3)&B6723
/+
581 
3)&B2.
/
3)&B6723
/+
581 
3)&B2.
Application information L6563H
34/50 DocID16047 Rev 4
Figure 47. Interface circuits that let the L6563H switch on or off a PWM controller
If the chip is provided with a soft-start pin, it is possible to delay the start-up of the dc-dc
stage with respect to that of the PFC stage, which is often desired, as described in
Figure 48. An underlying assumption in order for that to work properly is that the UVLO
thresholds of the PWM controller are certainly higher than those of the L6563H.
Figure 48. Interface circuits for power up sequencing when dc-dc has the SS function
If this is not the case or it is not possible to achieve a start-up delay long enough (because
this prevents the dc-dc stage from starting up correctly) or, simply, the PWM controller is
devoid of soft start, the arrangement of Figure 49 lets the dc-dc converter start-up when the
voltage generated by the PFC stage reaches a preset value. The technique relies on the
UVLO thresholds of the PWM controller.
Figure 49. Interface circuits for actual power-up sequencing (master PFC)
$0Y
/+
581

3:05(6
FRQWUROOHU

3:0B6723
;
8&[; 
8&[; 
/$; 
/; 
/$; RU
21
2))
DQRWODWFKHG
/+
3:05(6
FRQWUROOHU
3:0B/$7&+
;
/$; 
/; 
/$; 
EODWFKHG
/+
581

3:05(6
FRQWUROOHU

3:0B6723
;
8&[; 
8&[; 
/$; 
/; 
/$; RU
21
2))
DQRWODWFKHG
/+
581

3:05(6
FRQWUROOHU

3:0B6723
;
8&[; 
8&[; 
/$; 
/; 
/$; RU
21
2))
DQRWODWFKHG
/+
3:05(6
FRQWUROOHU
3:0B/$7&+
;
/$; 
/; 
/$; 
EODWFKHG
/+
3:05(6
FRQWUROOHU
3:0B/$7&+
;
/$; 
/; 
/$; 
EODWFKHG
$0Y
/+
581 
3:05(6
FRQWUROOHU
 3:0B6723
;
/$; 
/; 
/$; 
21
2))
66
&
66
/+
581 
3:05(6
FRQWUROOHU
 3:0B6723
;
/$; 
/; 
/$; 
21
2))
66
&
66
$0Y
6XSSO\UDLO
N:
%&&
%&
9=
/+

2))
21  
3:0
FRQWUROOHU
/$ ; 
8&[; 
8&[; 
/ ; 
/; 
;
581
9FF 3:0B6723
+9EXV
9FFB
2II
9=9FF
PD[
3)&B2.
6XSSO\UDLO
N:
%&&
%&
9=
/+

2))
21  
3:0
FRQWUROOHU
/$ ; 
8&[; 
8&[; 
/ ; 
/; 
;
581
9FF 3:0B6723
+9EXV
9FFB
2II
9=9FF
PD[
3)&B2.
AC mains RFF
DocID16047 Rev 4 35/50
L6563H Application information
50
Another possible use of the RUN and PWM_STOP pins (again, in systems where the PFC
stage is the master) is the brownout protection, thanks to the hysteresis provided.
The brownout protection is basically a not-latched device shutdown function that is activated
when a condition of mains undervoltage is detected. This condition may cause overheating
of the primary power section due to an excess of RMS current. Brownout can also cause the
PFC pre-regulator to work open loop and this could be dangerous to the PFC stage itself
and the downstream converter, should the input voltage return abruptly to its rated value.
Another problem is the spurious restarts that may occur during converter power down and
that cause the output voltage of the converter not to decay to zero monotonically. For these
reasons it is usually preferable to shutdown the unit in case of brownout.
IC shutdown upon brownout can be easily realized as shown in Figure 50. The scheme on
the left is of general use, that one on the right can be used if the bias levels of the multiplier
and the RFF·CFF time constant are compatible with the specified brownout level and with the
specified holdup time respectively. In this latest case, an additional resistor voltage divider
and one capacitor are not needed.
In table 1 it is possible to find a summary of all of the above mentioned working conditions
that cause the device to stop operating.
Figure 50. Brownout protection (master PFC)
6.8 High voltage start-up generator
Figure 51 shows the internal schematic of the high voltage start-up generator (HV
generator). It is made up of a high voltage N-channel FET, whose gate is biased by a 15 M
resistor, with a temperature-compensated current generator connected to its source.
RU N RUN
L6563H
L6563H
12
12
RU N RUN
L6563H
L6563H
12
12
mmzssw momma
Application information L6563H
36/50 DocID16047 Rev 4
Figure 51. High voltage start-up generator: internal schematic
The HV generator is physically located on a separate chip, made with BCD off-line
technology able to withstand 700 V, controlled by a low-voltage chip, where all of the control
functions reside.
With reference to the timing diagram of Figure 52, when power is first applied to the
converter the voltage on the bulk capacitor (Vin) builds up and, at about 80 V, the HV
generator is enabled to operate (HV_EN is pulled high) so that it draws about 1 mA. This
current, minus the device's consumption, charges the bypass capacitor connected from pin
Vcc (16) to ground and makes its voltage rise almost linearly.
Figure 52. Timing diagram: normal power-up and power-down sequences
As the Vcc voltage reaches the start-up threshold (12 V typ.) the low-voltage chip starts
operating and the HV generator is cut off by the Vcc_OK signal asserted high. The device is
powered by the energy stored in the Vcc capacitor until the self-supply circuit (we assume
$0Y
/+
0:
*1'
+96
9FF


,FKDUJH
9FFB2.
,+9
&21752/
+9B(1
$0Y
9FF
SLQ
*'
SLQ
+9B(1
9FF
21
9FF
2))
9FF
UHVWDUW
W
W
W
W
9+9
9
+9VWDUW
,FKDUJH
P$
W
W
9FFB2.
3RZHURQ 3RZHURII
1RUPDO
RSHUDWLRQ
'FGFORVHVUHJXODWLRQKHUH
,QSXWVRXUFHLVUHPRYHGKHUH
%XONFDSYROWDJH
+9FRQQHFWHGWR
UHFWLILHGLQSXWYROWDJH
5HFWLILHGLQSXWYROWDJH
+9FRQQHFWHGWREXONFDS
9FF
SLQ
*'
SLQ
+9B(1
9FF
21
9FF
2))
9FF
UHVWDUW
W
W
W
W
9+9
9
+9VWDUW
,FKDUJH
P$
W
W
9FFB2.
3RZHURQ 3RZHURII
1RUPDO
RSHUDWLRQ
'FGFORVHVUHJXODWLRQKHUH
,QSXWVRXUFHLVUHPRYHGKHUH
%XONFDSYROWDJH
+9FRQQHFWHGWR
UHFWLILHGLQSXWYROWDJH
5HFWLILHGLQSXWYROWDJH
+9FRQQHFWHGWREXONFDS
DocID16047 Rev 4 37/50
L6563H Application information
50
that it is made with an auxiliary winding in the transformer of the cascaded DC-DC converter
and a steering diode) develops a voltage high enough to sustain the operation. The residual
consumption of this circuit is just the one on the 15 M resistor (10 mW at 400 Vdc),
typically 50-70 times lower, under the same conditions, as compared to a standard start-up
circuit made with external dropping resistors.
At converter power-down the dc-dc converter loses regulation as soon as the input voltage
is so low that either peak current or maximum duty cycle limitation is tripped. Vcc then drops
and stops IC activity as it falls below the UVLO threshold (9.5 V typ.). The Vcc_OK signal is
de-asserted as the Vcc voltage goes below a threshold VCCrestart located at about 6 V.
The HV generator can now restart. However, if Vin < VHVstart, HV_EN is de-asserted too
and the HV generator is disabled. This prevents converter's restart attempts and ensures
monotonic output voltage decay at power-down in systems where brownout protection (see
the relevant section) is not used.
If the device detects a fault due to feedback failure the pin PWM_LATCH is asserted high
(see “Feedback failure protection” section for more details) and, in order to maintain alive
this signal to be provided to the DC-DC converter, the internal VCCrestart is brought up to
over the VccOff (turn-off threshold). As a result, shown in Figure 53, the voltage at pin Vcc,
oscillates between its turn-on and turn-off thresholds until the HV bus is recycled and drops
below the start up threshold of the HV generator.
The high voltage start-up circuitry is capable to guarantee a safe behavior in case of short-
circuit present on the dc-dc output when the Vcc of both controllers are generated by the
same auxiliary winding. The Figure 54 shows how the PFC manages the Vcc cycling and
the associated power transfer. At short-circuit the auxiliary circuit is no longer able to sustain
the Vcc which start dropping; reaching its VccOFF threshold the IC stops switching, reduces
consumption and drops more until the Vccrestart threshold is tripped. Now, the high voltage
start-up generator restarts and when the Vcc crosses again its turn on threshold the IC
starts switching. In this manner the power is transferred from mains to PFC output only
during a short time for each Trep cycle.
Figure 53. High voltage start-up behavior during latch-off protection
$0Y
*'
SLQ
9LQ
9FF21
W
W
W
W
9FF2))
3:0B/$7&+
SLQ
9FFUHVWDUW
9+9VWDUW
+9JHQHUDWRULVWXUQHGRQ
'LVDEOHODWFKLVUHVHWKHUH
+9B(1
)DXOWRFFXUVKHUH
+9JHQHUDWRUWXUQRQLVGLVDEOHGKHUH
,QSXWVRXUFHLVUHPRYHGKHUH
W
9FF
SLQ
*'
SLQ
9LQ
9FF21
W
W
W
W
9FF2))
3:0B/$7&+
SLQ
9FFUHVWDUW
9+9VWDUW
+9JHQHUDWRULVWXUQHGRQ
'LVDEOHODWFKLVUHVHWKHUH
+9B(1
)DXOWRFFXUVKHUH
+9JHQHUDWRUWXUQRQLVGLVDEOHGKHUH
,QSXWVRXUFHLVUHPRYHGKHUH
W
9FF
SLQ
/ Shun smut uccurs here
Application information L6563H
38/50 DocID16047 Rev 4
Figure 54. High voltage start-up managing the dc-dc output short-circuit
$0Y
9FF
SLQ
*'
SLQ
9FFB2.
9FF
21
9FF
2))
9FF
UHVWDUW
,FKDUJH
P$
6KRUWFLUFXLWRFFXUVKHUH
W
W
W
W
7UHS
9FF
SLQ
*'
SLQ
9FFB2.
9FF
21
9FF
2))
9FF
UHVWDUW
,FKDUJH
P$
6KRUWFLUFXLWRFFXUVKHUH
W
W
W
W
7UHS
Table 5. Summary of L6563H idle states
Condition Caused or revealed
bey
IC
behavior
Restart
condition
Typical IC
consumption
PWM_LATCH
Status
PWM_STOP
Status
UVLO Vcc < VccOff Disabled Vcc > VccOn 90 µA Off High
Feedback
disconnected
PFC_OK > VPFC_OK_S
AND
INV < 1.66V
Latched
Vcc < Vccrestart
then
Vcc > VccOn
180 µA High High
Standby PFC_OK < VPFC_OK_D
Stop
switching
PFC_OK >
VPFC_OK_E
1.5 mA Off High
AC brownout RUN < VDIS RUN > VEN 1.5 mA Off Low
OVP PFC_OK > VPFC_OK_S
PFC_OK <
VPFC_OK_R
2.2 mA Off High
Low
consumption COMP < 2.4V Burst
mode COMP > 2.4V 2.2 mA Off High
Saturated
boost
inductor
Vcs > VCS_th
Doubled
Tstart Auto restart 2.2 mA Off High
Duh h 4|]—w ————W m :Hh 1: h E—H . “ H? T u Al—fl 43—“ 4H“ * 4H fl » r“ n " 42—” ENE ~ 42—h ‘ ‘ ‘ ‘\_ u—m H H F u—w :thll—{h E 4H“
DocID16047 Rev 4 39/50
L6563H Application examples and ideas
50
7 Application examples and ideas
Figure 55. Demonstration board EVL6563H-100W, wide-range mains: electrical
schematic
$0Y
5
0
5
0
B
a
a
'
*%8-
&
1
&
1
/
+)< 57
5
.
)
)86($
-3
:,5 (-80 3(5 ,1 68/$7 ('
&
1
5
5
&
19
/
65: 34;;;9
'
677+/
5
17&56
&
X)9
&
1
9DF
,19
&203
08/7
&6
9))
7%2
3)&2.
3:0/$7&+
3:06723 
581 
=&' 
*1' 
*' 
9&& 
+96
1& 
8
/+
5
.
4
67)101
-
&21
'
1
5
0
5
0
5
.
5
0
5
.
5
.
5
0
5
5
5
.
5
5
5
.
5
5
5
0
5
.
5
0
5
.
&
1
&
X)
&
S
&
1
&
1
&
1
&
1
5
.
5
0
*1'
9&&
-
0.'6 
3:0B/$7&+
3:0B6723
212))
+6
+($76,1.
5
.
-
0.'6 
&
X)9
5
0
5
5
5
5
'
//
'
%=;&

Figure 57. L6563H 100 W TM PFC evaluation Figure 56. L6563H 100 W TM PFC evaluation Figure 59. L6563H 100W TM PFC evaluation Figure 58. L6563H 100 W TM PFC evaluation , 2; cm Sula ' cm Sula mm, mm mm, mm VW‘ Sim mzm Wm 7 mm mm. m m \m m r r H H m u‘m
Application examples and ideas L6563H
40/50 DocID16047 Rev 4
Figure 56. L6563H 100 W TM PFC evaluation
board: compliance to EN61000-3-2 standard
Figure 57. L6563H 100 W TM PFC evaluation
board: compliance to JEITA-MITI standard
Vin = 230 Vac - 50 Hz, Pout = 100 W
THD = 7.58%, PF = 0.979
Vin = 100 Vac - 50 Hz, Pout = 100 W
THD = 2.5%, PF = 0.997
Figure 58. L6563H 100 W TM PFC evaluation
board: input current waveform at 230-50 Hz -
100 W load
Figure 59. L6563H 100W TM PFC evaluation
board: input current waveform at 100 V-50 Hz -
100 W load
0.0001
0.001
0.01
0.1
1
1 3 5 7 9 111315171921232527293133353739
Harmonic Order [n]
Harmonic Current [A]
Measured value EN61 000 -3- 2 clas s -D l i m it s
0.0001
0.001
0. 0 1
0.1
1
10
1 3 5 7 9 11 13 15171921 2325272931 33353739
Harmonic Order [n]
Harmonic Current [A]
Measured value JEITA-MITI Class-D limits
DocID16047 Rev 4 41/50
L6563H Application examples and ideas
50
Figure 60. 90 W adapter with L6563H, L6599A, SRK2000A demonstration board: electrical
schematic
7BD
%
--
3
3
%
#;7#
3
3
2
#$$
3
/.
3
/.
-
$
3
3
2
45'/'
3
%
/.
%
/.
%
455)-
$
O' $
O'
$
O'
-


 
$
O'
%
--
3
8
3
$
O'
3
/.
3
6
-)
*/7
$0.1
.6-5
$4
7''
5#0
1'$0,
18.-"5$)
18.4501 
36/ 
;$% 
(/% 
(% 
7$$ 
)74
/$ 
$
3
$
/.
$
Q'
3
/.
3
3
3
3
3
$
O'
'
'64&5"
2
451/.'1
3
/.
2
#$$
3
%
4514-"
%
--
3 3
%
--
%
--
$
/.
6
-"
$44
%&-":
$'
3'.*/
45#:
*4&/
-*/&
(/% 
-7( 
7$$ 
/$ 
065 
)7( 
7#005 
%*4
1'$4501
36
4')"
3
3
$
/.
2
45'/./
3
3
2
451/.'1
%
--
)4
/.
$
%
-- 3
3
$
O'
3
3
2
#$$
$
O'
3
3
3
3
%
--
3
+1
+VNQFS
%
--
$
O'
3
+19
+VNQFS
$
$
O'
3
3
$
Q'
$
O'
$
O'
$
O'
3
3
/.
3
5
53&4$543"VY@




3
$
3
/5$34
3
$
O'
3
$
O'
3
,8
3
$
O'
+19
+VNQFS
+1
/.
3
3
$
O'
%
/.
$
O'
+1
+VNQFS
%
/.
3
2
/.
$
O' 3
3
+
.,%4
3
$
O'
%
#;7$
$
Q'
)4
)&"54*/,
$
O'
$
@
_
_
%
(#6+
 
 
2
45'/'
$
O'
3
3
$
O'
3
3
$
O'
$
3
%
/
3
3
$
O'
3
3
6
5-"*;
$
$
%
/.
3
3
4)035&%
$
O'
3
+
.,%4 $
O'
-
)':35
 
 
$
3
$
%
#;7#
3
6
43,"
4(/%
&/
%74
%74
(%
1(/%
(%
7$$
".W
Application examples and ideas L6563H
42/50 DocID16047 Rev 4
Figure 61. 150 W - 12 V adapter with L6563H, L6599A, SRK2000A: electrical schematic
7BD
7 "
&7-43,-
3
$
1'
%
#;7$
%
/
6
43,"
4(/%
&/
%74
%74
(%
1(/%
(%
7$$
3
$
/:
$
/
$
/
3
5






3
$
3
3
$

/'
6
4')"
3
3
$
/9
$
/
%
/
$
3
$
O'
3
+
'"450/
$
$
/'
3
$
/
3
3
$
O'
3
3
6
-)
*/7
$0.1
.6-5
$4
7''
5#0
1'$0,
18.-"5$)
18.4501 
36/ 
;$% 
(/% 
(% 
7$$ 
)74
/$ 
$
/
$
%
#;7#
_
_@
%
(#6+
 
 
$
3
-

 
 
$
/:
3
3
3
39
%
/
3
$
+1




3
%
/
 




$
/:
3
$
/'
3
2
#$$
$
$
/
3
3
$
/7
3
3
3
3
$

1'
%
#"4
3
3
$
/
3
3
$
/
3
3
3
3
3
$
3
2
45-/--'
3
3
$

Q'
$
3
3
3
$
3
%
455)-
6
54."*45
$7@065
$7
7@3&'
(/%
$$
$$
$$@065
7$$
$
)4
)&"54*/,
$
/
$
/
%
/
$
/'
3
3
3
$
3
3
3
%
/
 
$
/
2
45-/--'
3
2
45'/./
3
3
3
3
/5$34
$
/
3
3
3
$
/
3
$
/
$
/:
%
/
%
/
6
-"%
$44
%&-":
$'
3'.*/
45#:
*4&/
-*/&
(/% 
-7( 
7$$ 
/$ 
065 
)7( 
7#005 
%*4
1'$4501
3
%
/
 
$
$
-


 
$
/9
3
6
4')"
+
'"450/
'
'64&5"
%
/
%
/
 
$
3
3
6
54$
0VU
(/%
7Q
7N
7DD
$
/
$
/
3
$
/
$
+
.,%4
%
/
 
3
3
2
45'/./
2
#$$
%
#"4
$
/'
$
1'7
2
45'/./
3
3
$
/
3
%
4514-"
 
%
4514;
2
#$
3
3
".W
:93 u up 53 E3 . 7 » news? W a. \ So W 2. HS 5%.“ u“ s _ : _ an _ 1 m: 1 52:52 h
DocID16047 Rev 4 43/50
L6563H Application examples and ideas
50
Figure 62. EVL6563H -250 W TM PFC demonstration board: electrical schematic
Application examples and ideas L6563H
44/50 DocID16047 Rev 4
Figure 63. EVL6599A-90WADP 90 W adapter demonstration board: electrical
schematic
Confidential
DRAFT
7BD
DocID16047 Rev 4 45/50
L6563H Package information
50
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
a m: mzfia $5 22 30 M72: 025m Ham 0, H A .9}:
Package information L6563H
46/50 DocID16047 Rev 4
8.1 SO16 package information
Figure 64. SO16 package outline
DocID16047 Rev 4 47/50
L6563H Package information
50
Table 6. SO16 package mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A - - 1.75
A1 0.1 - 0.25
A2 1.25 - -
b 0.31 - 0.51
c 0.17 - 0.25
D 9.8 9.9 10
E 5.8 6 6.2
E1 3.8 3.9 4
e - 1.27 -
h 0.25 - 0.5
L 0.4 - 1.27
k 0 - 8
ccc - - 0.1
Ordering codes L6563H
48/50 DocID16047 Rev 4
9 Ordering codes
Table 7. Ordering information
Order codes Package Packing
L6563H
SO16
Tube
L6563HTR Tape and reel
DocID16047 Rev 4 49/50
L6563H Revision history
50
10 Revision history
Table 8. Document revision history
Date Revision Changes
22-Jul-2009 1 Initial release.
01-Feb-2010 2 Updated Table 4 on page 11
21-Dec-2010 3
Updated Figure 1 on page 1, Figure 24 on page 20, Table 3 on
page 8, Table 4 on page 11, Table 5 on page 34 and Section 6.2 on
page 25 and Table 5 on page 38.
07-Jun-2017 4
Updated Figure 60 on page 41 and Figure 61 on page 42 (updated
titles and replaced figures by new ones).
Minor modifications throughout document.
L6563H
50/50 DocID16047 Rev 4
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved