IXG(H,T)32N120A3 Datasheet by IXYS

© 2011 IXYS CORPORATION, All rights Reserved DS99608C(03/11)
IXGH32N120A3
IXGT32N120A3
GenX3TM 1200V
IGBTs
Ultra-Low Vsat PT IGBTs for
up to 3 kHz Switching
Features
zOptimized for Low Conduction Losses
zInternational Standard Packages
Advantages
zHigh Power Density
zLow Gate Drive Requirement
Applications
zPower Inverters
zCapacitor Discharge
zUPS
zMotor Drives
zSMPS
zPFC Circuits
zBattery Chargers
zWelding Machines
zLamp Ballasts
zInrush Current Protection Circuits
Symbol Test Conditions Maximum Ratings
VCES TJ= 25°C to 150°C 1200 V
VCGR TJ= 25°C to 150°C, RGE = 1MΩ1200 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC= 25°C 75 A
IC110 TC= 110°C 32 A
ICM TC= 25°C, 1ms 230 A
IATC= 25°C 20 A
EAS TC= 25°C 120 mJ
SSOA VGE = 15V, TJ = 125°C, RG = 20Ω ICM = 150 A
(RBSOA) Clamped Inductive Load VCE
0.8 VCES
PCTC= 25°C 300 W
TJ-55 ... +150 °C
TJM 150 °C
Tstg -55 ... +150 °C
TL1.6mm (0.063in) from Case for 10s 300 °C
TSOLD Plastic Body for 10s 260 °C
MdMounting Torque (TO-247) 1.13/10 Nm/lb.in.
Weight TO-247 6.0 g
TO-268 4.0 g
VCES = 1200V
IC110 = 32A
VCE(sat)
2.35V
Symbol Test Conditions Characteristic Values
(TJ = 25°C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC= 250μA, VGE = 0V 1200 V
VGE(th) IC= 250μA, VCE = VGE 3.0 5.0 V
ICES VCE = VCES, VGE = 0V 50 μA
TJ = 125°C 1 mA
IGES VCE = 0V, VGE = ±20V ±100 nA
VCE(sat) IC = IC110, VGE = 15V, Note 1 2.35 V
IC = 400A, VGE = 30V, Note 1 11 V
G = Gate C = Collector
E = Emitter Tab = Collector
TO-247 (IXGH)
G
EC (Tab)
C
TO-268 (IXGT)
E
G
C (Tab)
'4 fig??? Li; J L, 5727555 7uu573452 usvzzaaz
IXGH32N120A3
IXGT32N120A3
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or more of the following U.S. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
TO-247 AD Outline
TO-268 Outline
Dim. Millimeter Inches
Min. Max. Min. Max.
A 4.7 5.3 .185 .209
A12.2 2.54 .087 .102
A22.2 2.6 .059 .098
b 1.0 1.4 .040 .055
b11.65 2.13 .065 .084
b22.87 3.12 .113 .123
C .4 .8 .016 .031
D 20.80 21.46 .819 .845
E 15.75 16.26 .610 .640
e 5.20 5.72 0.205 0.225
L 19.81 20.32 .780 .800
L1 4.50 .177
P 3.55 3.65 .140 .144
Q 5.89 6.40 0.232 0.252
R 4.32 5.49 .170 .216
S 6.15 BSC 242 BSC
Terminals: 1 - Gate 2 - Collector
3 - Emitter
1 2 3
Terminals: 1 - Gate 2, 4 - Collector
3 - Emitter
Symbol Test Conditions Characteristic Values
(TJ = 25°C, Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 50A, VCE = 10V, Note 1 14 20 S
IC(on) VCE = 10V, VGE = 15V, Note 1 94 A
Cies 2150 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 130 pF
Cres 14 pF
Qg 89 nC
Qge IC = 50A, VGE = 15V, VCE = 0.5 VCES 15 nC
Qgc 34 nC
td(on) 39 ns
tr 200 ns
td(off) 140 ns
tf 1240 ns
RthJC 0.42 °C/W
RthCK TO-247 0.21 °C/W
Resistive Switching Times, TJ = 25°C
VGE = 20V, VCE = 0.8 VCES, IC = 100A
RG = 10Ω (External)
Note 1. Pulse test, t 300μs, duty cycle, d 2%.
IL: A Amperes VEE A Vo‘ts 150 160 140 120 mo BL) 60 40 20 25v 20v 15v mv VcErsau A Normahzed \L 3 A vCE A VoMs VGE AVmLs © 2011 0015 CORPORATION Au ngms Reserved
© 2011 IXYS CORPORATION, All rights Reserved
Fig. 1. Output Characteristics @ T
J
= 25ºC
0
20
40
60
80
100
120
140
160
180
200
0123456
V
CE
- Volts
I
C
- Amperes
V
GE
= 30V
25V
20V
10V
15V
Fig. 2. Extended Output Characteristics @ T
J
= 25ºC
0
25
50
75
100
125
150
175
200
225
250
0 5 10 15 20
V
CE
- Volts
I
C
-
Amperes
V
GE
= 30V
25V
20V
15V
10V
Fig. 3. Output Characteristics @ T
J
= 125ºC
0
20
40
60
80
100
120
140
160
180
200
01234567
V
CE
- Volts
I
C
- Amperes
V
GE
= 30V
25V
20V
15V
10V
Fig. 4. Dependence of V
CE(sat)
on
Junction Temperature
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125 150
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 192A
I
C
= 96A
I
C
= 32A
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
1
2
3
4
5
6
7
8
9
10
6 8 10 12 14 16 18 20 22 24 26 28 30
V
GE
- Volts
V
CE
- Volts
I
C
= 150A
T
J
= 25ºC
100A
50A
Fig. 6. Input Admittance
0
10
20
30
40
50
60
70
80
90
100
34567891011
V
GE
- Volts
I
C
-
Amperes
T
J
= - 40ºC
25ºC
125ºC
IXGH32N120A3
IXGT32N120A3
Hm g 9m 8 \ 2 ma Z \\ i 500 \ w \\ za \ aua ma ‘ ‘ 25 35 A5 55 e5 75 a5 95 T1 , Degrees Cenhgrade 105 Ma ‘25 Btut21A1 s 15 2D 22 VGErVohs Fig. 12. Capacitance menu 14 12 § 16 1 one g m g g / c: ‘ B J) 3 Q > § 5 :4 E3 ma 4 / 8 2 a m o o 5 m <5 2m="" 25="" vcev="" vans="" va5="" reserves="" the="" ngm="" to="" change="" mes,="" test="" commons,="" and="" dxmensxons.="">
IXGH32N120A3
IXGT32N120A3
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
Fig. 7. Transconductance
0
4
8
12
16
20
24
0 102030405060708090100
I
C
- Amperes
g f s -
Siemens
T
J
= - 40ºC
25ºC
125ºC
Fig. 12. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarads
f
= 1 MHz
Cies
Coes
Cres
Fig. 8. Dependence of BV
CES
& V
(th)GE
on
Junction Temperature
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
-50 -25 0 25 50 75 100 125 150
T
J
- Degrees Centigrade
V
(th)GE
- Normalized
0.91
0.94
0.97
1.00
1.03
1.06
1.09
1.12
1.15
1.18
BV
CES
- Normalized
V
(th)GE
BV
CES
Fig. 9. Single-Pulsed Avalanche Energy
vs. Junction Temperature
20
40
60
80
100
120
140
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
E
as
- MilliJoules
I
C
= 20A
V
GE
= 15V
Fig. 10. Resistive Turn-on Rise Time
vs. Gate Voltage
100
300
500
700
900
1100
1300
8 1012141618202224262830
V
GE
- Volts
t
r
- Nanoseconds
R
G
= 10, I
C
= 100A
V
CE
= 960V
T
J
= 125ºC
T
J
= 25ºC
Fig. 11. Gate Charge
0
2
4
6
8
10
12
14
16
0 102030405060708090
Q
G
- NanoCoulombs
V
GE
- Volts
V
CE
= 600V
I
C
= 50A
I
G
= 10mA
:I IXYS Am 1r (arnnl- 320 7 n «25m vCE 350 VCE=960V 3m: mam ; m g 3 22m 83w 3, § 3 2 mm 3320 g 2 o m N u. ZZAO lem m . _ § ; ‘250 3 220 2m 2m: 2w 180 22a 160 to M 18 22 2s 30 34 38 42 vs 52 25 RGrOhms Fig 15. Resistive Turn-on RiseTirne vst Collector Current 320 tsao 300 mu / , , «m 150A , 250 / 1950 .> ‘ g Rosa - . - 826° / s .» .- ,. m / u ‘. ,. g //— 31940 ‘ .- fl . §240 g ’_ . Z. 2mm > t ., e220 ; . ‘ / -19207 _ * . - i 200 // - _. / 1910 ‘-e — /// n=25°c .- 15” / term 160 1890 50 65 7a 75 80 55 so 95 ion ins MEI 115 lzn to 15 2D 25 30 ID , Amperes RG , Ohm F g 172 Resistive Turn-on Switching Times Fig 1a Resistive Turn-o vst Junction Temperature vst Collector 2m) 2m: 2000 1900 .,— MW. _ 190 1500 e =lofl v 720v 1800 0 CE 18!! 18W Elmo no; Elma ~ 3 V- g v 31600 lc=150A1WA m 160 g 3‘60“ 2 = 2 mam) lat: 5 mm Z m z ; § Low _iAao «4o 3 _ mm 130 1300 1200 120 t2m Man 110 mm 25 35 45 55 e5 75 55 55 ins 115 <25 tj="" ,="" degrees="" cenligraoe="" 50="" 6d="" 70="" an="" 90="" ton="" lcrampe="" ©="" 2011="" lva="" corporation="" all="" hqms="" reserved="">
© 2011 IXYS CORPORATION, All rights Reserved
Fig. 18. Resistive Turn-off Switching Times
vs. Collector Current
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
50 60 70 80 90 100 110 120 130 140 150
IC - Amperes
t
f
- Nanoseconds
110
120
130
140
150
160
170
180
190
200
t
d
(
off
)
- Nanoseconds
t
f
td(off)
- - - -
R
G
= 10, V
GE
= 20V
V
CE
= 960V
T
J
= 12C
T
J
= 25ºC
Fig. 16. Resistive Turn-off Switching Times
vs. Gate Resistance
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
10 15 20 25 30 35 40 45 50
RG - Ohms
t
f
- Nanoseconds
50
100
150
200
250
300
350
400
450
500
t
d(off)
- Nanoseconds
t
f
t
d(off
)
- - - -
T
J
= 125ºC, V
GE
= 20V
V
CE
= 960V
I
C
= 100A
I
C
= 50A, 100A, 150A
Fig. 13. Resistive Turn-on Switching Times
vs. Gate Resistance
220
240
260
280
300
320
340
360
380
400
420
10 14 18 22 26 30 34 38 42 46 50
RG - Ohms
t r
- Nanoseconds
37
40
43
46
49
52
55
58
61
64
67
t
d
(
on
)
- Nanoseconds
t
r
t
d(on)
- - - -
T
J
= 125ºC, V
GE
= 20V
V
CE
= 960V
I
C
= 100A
I
C
= 50A
I
C
= 150A
Fig. 17. Resistive Turn-off Switching Times
vs. Junction Temperature
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
25 35 45 55 65 75 85 95 105 115 125
TJ - Degrees Centigrade
t
f
- Nanoseconds
110
120
130
140
150
160
170
180
190
200
t
d
(
off
)
-
Nanoseconds
t
f
t
d(off)
- - - -
R
G
= 10, V
GE
= 20V
V
CE
= 960V
I
C
= 150A, 100A, 50A
Fig. 15. Resistive Turn-on Rise Time
vs. Collector Current
160
180
200
220
240
260
280
300
320
60 65 70 75 80 85 90 95 100 105 110 115 120
IC - Amperes
t
r
- Nanoseconds
R
G
= 10, V
GE
= 20V
V
CE
= 960V
T
J
= 125ºC
T
J
= 25ºC
Fig. 14. Resistive Turn-on Rise Time
vs. Junction Temperature
160
180
200
220
240
260
280
300
320
340
25 35 45 55 65 75 85 95 105 115 125
TJ - Degrees Centigrade
t
r
- Nanoseconds
R
G
= 10, V
GE
= 20V
V
CE
= 960V
I
C
= 150A
I
C
= 50A
I
C
= 100A
IXGH32N120A3
IXGT32N120A3
m 2m» - 'c /w nm 000 IXYS Rsser
IXGH32N120A3
IXGT32N120A3
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
Fig. 20. Maximum Transient Thermal Impedance
0.01
0.1
1
0.0001 0.001 0.01 0.1 1 10
Pulse Width - Seconds
Z
(th)JC
- ºC / W
Fig. 19. Reverse-Bias Safe Operating Area
0
20
40
60
80
100
120
140
160
200 300 400 500 600 700 800 900 1000 1100 1200
V
CE
- Volts
I
C
- Amperes
T
J
= 125ºC
R
G
= 20
dv / dt < 10V / ns
IXYS REF: IXG_32N120A3(4A)03-04-11-A
IXYS A Lillelluse Tecnnumgy
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.