DPS310 Datasheet by Infineon Technologies

‘ ifleon m a / ~~
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Product Description
The DPS310 is a miniaturized Digital Barometric Air Pressure Sensor with a high accuracy
and a low current consumption, capable of measuring both pressure and temperature.
The pressure sensor element is based on a capacitive sensing principle which
guarantees high precision during temperature changes. The small package makes the
DPS310 ideal for mobile applications and wearable devices.
The internal signal processor converts the output from the pressure and temperature sensor elements to 24 bit
results. Each unit is individually calibrated, the calibration coefficients calculated during this process are stored
in the calibration registers. The coefficients are used in the application to convert the measurement results to
high accuracy pressure and temperature values. The result FIFO can store up to 32 measurement results,
allowing for a reduced host processor polling rate. Sensor measurements and calibration coefficients are
available through the serial I2C or SPI interface. The measurement status is indicated by status bits or interrupts
on the SDO pin.
Features
Operation range: Pressure: 300 –1200 hPa. Temperature: -40 – 85 °C.
Pressure sensor precision: ± 0.002 hPa (or ±0.02 m) (high precision mode).
Relative accuracy: ± 0.06 hPa (or ±0.5 m)
Absolute accuracy: ± 1 hPa (or ±8 m)
Temperature accuracy: ± 0.5°C.
Pressure temperature sensitivity: 0.5Pa/K
Measurement time: Typical: 27.6 ms for standard mode (16x). Minimum: 3.6 ms for low
precision mode.
Average current consumption: 1.7 µA for Pressure Measurement, 1.5uA for Temperature
measurement @1Hz sampling rate, Standby: 0.5 µA.
Supply voltage: VDDIO: 1.2 – 3.6 V, VDD: 1.7 – 3.6 V.
Operating modes: Command (manual), Background (automatic), and Standby.
Calibration: Individually calibrated with coefficients for measurement correction.
FIFO: Stores up to 32 pressure or temperature measurements.
Interface: I2C and SPI (both with optional interrupt)
Package dimensions: 8-pin LGA, 2.0 mm x 2.5 mm x 1.0 mm.
Green Product (RoHS) Compliant
Typical Applications
Indoor Navigation (floor detection e.g. in shopping malls and parking garages)
Health and Sports (accurate elevation gain and vertical speed)
Outdoor Navigation (GPS start-up time and accuracy improvement, dead-reckoning e.g. in tunnels)
Weather Station('Micro-weather' and local forecasts)
HDD drivers, (leak rate detection in hard disk drives)
Drones (flight stability and height control)
Please read the Important Notice and Warnings at the end of this document V1.1
www.infineon.com 2019-07-11
@w
Table of contents
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1 Definitions, acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Pin Configuration and Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Pin Configuration and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3.3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Temperature Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Pressure Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
4.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Mode transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Start-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Measurement Precision and Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Sensor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4.6 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7 Result Register Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.8 FIFO Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.9 Calibration and Measurement Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.9.1 How to Calculate Compensated Pressure Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.9.2 How to Calculate Compensated Temperature Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.9.3 Compensation Scale Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
4.9.4 Pressure and Temperature calculation flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.1 Measurement Settings and Use Case Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Application Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 IIR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
6 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Table of contents
2 V1.1
2019-07-11
@w
6.3 Interface parameters specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3.1 General interface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.3.1.1 I2C timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3.1.2 SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1 Pressure Data (PRS_Bn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1.1 PRS_B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.2 PRS_B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.3 PRS_B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 Temperature Data (TMP_Tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8.2.1 TMP_B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2.2 TMP_B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2.3 TMP_B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 Pressure Configuration (PRS_CFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.4 Temperature Configuration(TMP_CFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.5 Sensor Operating Mode and Status (MEAS_CFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.6 Interrupt and FIFO configuration (CFG_REG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.7 Interrupt Status (INT_STS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
8.8 FIFO Status (FIFO_STS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
8.9 Soft Reset and FIFO flush (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.10 Product and Revision ID (ID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.11 Calibration Coefficients (COEF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.12 Coefficient Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
10 Package Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11 Reflow soldering and board assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Known Issues List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Table of contents
3 V1.1
2019-07-11
@w
1 Definitions, acronyms and abbreviations
1.1 Definitions
An explanation of terms and definitions used in this datasheet.
Table 1
Term Definition/explanation
Absolute accuracy The absolute measurement accuracy over the entire measurement
range.
Digital bit depth The total bit depth used for conversion of the sensor input to the
digital output. Measured in bits.
Digital resolution The pressure value represented by the LSB change in output. This
value should be much smaller than the sensor noise.
Full Scale Range (FSR) The peak-to-peak measurement range of the sensor.
LSB Least Significant Bit
Measurement time The time required to acquire one sensor output result. This value
determines the maximum measurement rate.
MSB Most Significant Bit
Non-linearity The deviation of measured output from the best-fit straight line,
relative to 1000 hPa and 25 °C.
Output compensation The process of applying an algorithm to the sensor output to improve
the absolute accuracy of the sensor across temperature and to
minimize unit to unit output variation. This algorithm makes use of
both the temperature sensor readings and the individual calibration
coefficients.
Precision (noise) The smallest measurable change, expressed as rms, after sensor
oversampling.
Pressure temperature coefficient The pressure measurement deviation, after compensation, from
expected measurement value due to temperature change from 25 °C.
Measured in Pa/K.
Sensor calibration The process, during the production test, where the sensor's
measurement results are compared against reference values, and a set
of calibration coefficients are calculated from the deviation. The
coefficients are stored in the sensor's memory and are used in the
output compensation.
Sensor oversampling rate (OSR) Specifies the number of sensor measurements used internally to
generate one sensor output result.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
1 Definitions, acronyms and abbreviations
4 V1.1
2019-07-11
@w ‘ GND VDD ‘ GND css VDDIO VtNI HULK: SDI SDO 5 . SCK
2 Pin Configuration and Block Diagram
2.1 Pin Configuration and Description
Figure 1 Pin configuration (top view, figure not to scale)
Table 2 Pin description
Pin Name SPI 3-wire SPI 3-wire with
interrupt
SPI 4-wire I2C I2C with
interrupt
1 GND Ground
2 CSB Chip select - active
low
Chip select -
active low
Chip select -
active low
Not used - open
(internal pull-up)
or tie to VDDIO
Not used - open
(internal pull-
up) or tie to
VDDIO
3 SDI Serial data in/out Serial data in/out Serial data in Serial data in/out Serial data
in/out
4 SCK Serial Clock
5 SDO Not used Interrupt Serial data out Least significant
bit in the device
address.
Interrupt pin
and least
significant bit in
the device
address.
6 VDDIO Digital supply voltage for digital blocks and I/O interface
7 GND Ground
8 VDD Supply voltage for analog blocks
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
2 Pin Configuration and Block Diagram
5 V1.1
2019-07-11
(Inflneon Temperature D' 't | Sensor _ lgla Mux ADC — Signal — D'g'ta' — D'g'm‘ —« IZC/SPI . Core Interface _ Processmg I Capacltive Calibration _ _. VDDIO Pressure CoeffICIents Sensor Memory Voltage Interface Regulators FIFO — "' VDD
2.2 Block Diagram
Figure 2
3 Specifications
3.1 Operating Range
The following operating conditions must not be exceeded in order to ensure correct operation of the device. All
parameters specified in the following sections refer to these operating conditions, unless noted otherwise.
Table 3 Operating Range
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Pressure Pa300 1200 hPa
Temperature Ta-40 85 °C
Supply voltage VDD 1.7 3.6 V
Supply voltage IO VDDIO 1.2 3.6 V
Supply voltage ramp-up time tvddup 0.001 5 ms Time for supply voltage
to reach 90% of final
value.
Solder drift1) 0.8 hPa Minimum solder height
50um.
Long term stability ±1 hPa Depending on
environmental
conditions.
1Effects of solder drift can be eliminated by one point calibration. See AN487.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
3 Specifications
6 V1.1
2019-07-11
@w
3.2 Absolute Maximum Ratings
Maximum ratings are absolute ratings. Exceeding any one of these values may cause irreversible damage to the
integrated circuit.
Attention:Stresses above the values listed as "Absolute Maximum Ratings" may cause permanent damage
to the devices. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 4 Absolute Maximum Ratings
Parameter Symbol Values Unit Note / Test
Condition
Min. Typ. Max.
VDD and VDDIO VDDxx_max 4 V
Voltage on any pin Vmax 4 V
Storage temperature Ts-40 125 °C
Pressure Pmax 10,000 hPa
ESD VESD_HBM -2 2 KV HBM (JS001)
3.3 Current Consumption
Test conditions (unless otherwise specified in the table): VDD= 1.8V and VDDIO=1.8V. Typ. values (PA=1000hPa and
TA=25°C). Max./Min. values (PA= 950-1050hPa and TA=0...+65°C).
Table 5 Current Consumption
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Peak Current Consumption Ipeak 345 µA during Pressure
measurement
280 µA during Temperature
measurement
Standby Current Consumption Istb 0.5 µA
Current Consumption.
( 1 pressure and temperature
measurements per second.)
I1Hz 2.1 µA Low precision
11 Standard precision
38 High precision
Note: The current consumption depends on both pressure measurement precision and rate. Please refer to the
Pressure Configuration (PRS_CFG) register description for an overview of the current consumption in different
combinations of measurement precision and rate.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
3 Specifications
7 V1.1
2019-07-11
@w
3.4 Temperature Transfer Function
Test conditions (unless otherwise specified in the table): VDD= 1.8V and VDDIO=1.8V. Typ. values (PA=1000hPa and
TA=25°C). Max./Min. values (PA= 950-1050hPa and TA=0...+65°C).
Table 6 Temperature Transfer Function
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Temperature accuracy At +/-0.5 °C
Temperature data resolution At_res 0.01 °C
Temperature measurement rate f 1 128 Hz
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
3 Specifications
8 V1.1
2019-07-11
@w
3.5 Pressure Transfer Function
Test conditions (unless otherwise specified in the table): VDD= 1.8V and VDDIO=1.8V. Typ. values (PA=1000hPa and
TA=25°C).
Table 7 Pressure Transfer Function
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Absolute pressure accuracy Ap_abs +/-100 Pa Pa=300 - 1200hPa;
TA=0..+65°C; Excluding
solder effects
Relative pressure accuracy Ap_rel +/-6 Pa Any Δ1hPa in the range
Pa=800 - 1200hP; Any
constant temperature in
the range TA=20..+60°C
Pressure precision Ap_prc 1.0 PaRMS Low Power
0.35 Standard
0.2 High Precision
Note: Pressure precision is measured as the average standard deviation. Please refer to the Pressure
Configuration (PRS_CFG) register description for all precision mode options.
Power supply rejection Ap_psr 0.063 PaRMS Measured with 217Hz
square wave and broad
band noise, 100mVpp
Pressure temperature sensitivity
of calibrated measurements
Ap_tmp 0.5 Pa/K 1000hPa, 25...+65°C.
Pressure data resolution Ap_res 0.06 PaRMS
Pressure measurement rate f 1 128 Hz
Pressure measurement time t 5.2 ms Low Power
27.6 Standard
105 High Precision
Note: The pressure measurement time (and thus the maximum rate) depends on the pressure
measurement precision. Please refer to the Pressure Configuration (PRS_CFG) register description
for an overview of the possible combinations of measurement precision and rate.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
3 Specifications
9 V1.1
2019-07-11
@w
3.6 Timing Characteristics
Table 8 Timing Characteristics
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Start-up timing
Time to sensor ready TSensor_rdy 12 ms The SENSOR_RDY bit in the
Measurement Configuration
register will be set when the
sensor is ready.
Time to coefficients are
available.
TCoef_rdy 40 ms The COEF_RDY bit in the
Measurement Configuration
register will be set when the
coefficients can be read out.
Note: Start-up timing is measured from VDD > 1.2V & VDDIO > 0.6V or Soft Reset.
I2C Clock. fI2C 3.4 MHz
SPI Clock fSPI 10 MHz
4 Functional Description
4.1 Operating Modes
The DPS310 supports 3 different modes of operation: Standby, Command, and Background mode.
Standby Mode
- Default mode after power on or reset. No measurements are performed.
- All registers and compensation coefficients are accessible.
Command Mode
- One temperature or pressure measurement is performed according to the selected precision.
- The sensor will return to Standby Mode when the measurement is finished, and the measurement
result will be available in the data registers.
Background Mode
- Pressure and/or temperature measurements are performed continuously according to the selected
measurement precision and rate. The temperature measurement is performed immediately after the
pressure measurement.
- The FIFO can be used to store 32 measurement results and minimize the number of times the sensor
must be accessed to read out the results.
Note: Operation mode and measurement type are set in the Sensor Operating Mode and Status
(MEAS_CFG) register.
4.2 Mode transition diagram
The mode transition diagram is shown below.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
10 V1.1
2019-07-11
infineon POR/Sofl: Reset Standby (no MM, Inwest Power) MM comm [MD HUB: Wad rnrffimnmr. A rrmm rnnfigiirp MM cummi "um” mm MM Cunuui “1m", “Hum "111" Manual MM (acc. to accuracy cunfigurahan) MM Contrai- mm" : ackg round (acc. to rate 5. accuracy anfiguration _ MM cummi mi: "“3- read iesuii Initicompiete bit Trimicomplete bit RESN VDDIO ! I VDD ! I 2,5ms 12ms 40ms time readout 3. MM No chip access No trim info Mn coefficient info possible All SPI/IZC Pads as I"
Figure 3 Mode transition diagram
4.3 Start-up sequence
The start-up sequence is shown below. This diagram shows when the registers are accessible for read and/or
write and also when the Pressure/Temperature measurements can start.
Figure 4 Start-up sequence
4.4 Measurement Precision and Rate
Different applications require different measurement precision and measurement rates. Some applications,
such as weather stations, require lower precision and measurement rates than for instance indoor navigation
and sports applications.
When the sensor DPS310 is in Background Mode, the measurement precision and rate can be configured to
match the requirements of the application. This reduces current consumption of the sensor and the system.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
11 V1.1
2019-07-11
inflneon Cu rrent [HA] rm Me4)uremer,L(T—)5mq Memmm ,,,,,,,, Number 0' Measurements Der mud New on mm mm P P P P T T P P P P T T Ufi—fi—l Twme[s] Measuremenlhme dapands on number oiaveraged samp‘es (oversamplma me)
In order to achieve a higher precision, the sensor DPS310 will read multiple times ( oversampling ), and
combine the readings into one result. This increases the current consumption and also the measurement time,
reducing the maximum possible measurement rate. It is necessary to balance the accuracy and data rate
required for each application with the allowable current consumption.
The measurement precision, rate and time is set in the Pressure Configuration (PRS_CFG) and Temperature
Configuration(TMP_CFG) registers. The register descriptions contain information about the current
consumption and the possible combinations of measurement precision, time, and rate.
Enabling temperature measurements allows for compensation of temperature drift in the pressure
measurement. The rates of these measurements can be set independently, but temperature compensation is
more accurate when temperature and pressure measurements are taken together. This reduces the maximum
pressure measurement rate, since: Ratetemperature*Timetemperature + Ratepressure*Timepressure< 1 second.
Measurement Settings and Use Case Examples contains a table with examples of combinations of pressure
and temperature precision and rates for different use cases.
In the figure below is described the Temperature and Pressure measurements sequence in background mode.
Figure 5 Background mode temperature and pressure measurements sequence
The DPS310 can be accessed as a slave device through mode '11' SPI 3-wire, SPI 4-wire, or I2C serial interface
.• I2C interface
- The sensor's default interface.
- The sensor's address is 0x77 (default) or 0x76 (if the SDO pin is pulled-down to GND).
SPI interface
- The sensor will switch to SPI configuration if it detects an active low on the CSB pin. SPI 4-wire is the
default SPI interface.
- To enable SPI 3-wire configuration, a bit must be set in the Interrupt and FIFO configuration
(CFG_REG) register after start up.
More details about digital interfaces are available in the Digital interfaces.
4.5 Sensor Interface
4.6 Interrupt
The sensor DPS310 can generate an interrupt when a new measurement result is available and/or when the
FIFO is full. The sensor uses the SDO pin for the interrupt signal, and interrupt is therefore not supported if the
interface is 4-wire SPI.
The interrupt is enabled and configured in the Interrupt and FIFO configuration (CFG_REG) register. In I2C
configuration the SDO pin serves as both interrupt and as the least significant bit in the device address. If the
SDO pin is pulled low the interrupt polarity must be set to active high and vice-versa.
The interrupt status can be read from the Interrupt Status (INT_STS) register.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
12 V1.1
2019-07-11
@w
4.7 Result Register Operation
After starting the measurements, the latest pressure and temperature raw data will be available in their
respective result registers. Temperature measurement can be skipped. The temperature measurements can be
disabled if there is a requirement to measure pressure rapidly, but it will make accurate temperature drift
compensation impossible.
All measurement data can be read in a single command using auto-increment read. When FIFO is disabled,
reading the result register will not affect the register value, it will only be updated when a new measurement is
completed. When FIFO is enabled, the pressure result register will update to the next value in the FIFO after each
read. When all of the FIFO values have been read, the result register will be set to 0x800000.
4.8 FIFO Operation
The DPS310 FIFO can store the last 32 measurements of pressure or temperature. This reduces the overall
system power consumption as the host processor does not need to continuously poll data from the sensor but
can go into standby mode for longer periods of time.
The FIFO can store any combination of pressure and temperature results, according to the background mode
measurement rate settings. The pressure rate can for instance be set 4 times higher than the temperature rate
and thus only every fifth result will be a temperature result. The measurement type can be seen in the result
data. The sensor will set the least significant bit to:
'1' if the result is a pressure measurement.
'0' if it is a temperature measurement.
- The sensor uses 24 bits to store the measurement result. Because this is more bits than is needed to
cover the full dynamic range of the pressure sensor, using the least significant bit to label the
measurement type will not affect the precision of the result.
The FIFO can be enabled in the Interrupt and FIFO configuration register. The data from the FIFO is read out
from the Pressure Data (PRS_Bn) registers regardless of whether the next result in the FIFO is a temperature or a
pressure measurement.
When a measurement has been read out, the FIFO will auto increment and place the next result in the data
register. A flag will be set in the FIFO Status register when the FIFO is empty and all following reads will return
0x800000.
If the FIFO is full, the FIFO_FULL bit in the FIFO Status (FIFO_STS)will be set. If the INT_FIFO bit in the Interrupt
and FIFO configuration register ( CFG_REG) is set, an interrupt will also be generated when the FIFO is full.
The FIFO will stop recording measurements results when it is full.
4.9 Calibration and Measurement Compensation
The sensor DPS310 is a calibrated sensor and contains calibration coefficients. These are used in the application
(for instance by the host processor) to compensate the measurement results for sensor non-linearities.
The sections that follow describe how to calculate the compensated results and convert them into Pa and °C
values.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
13 V1.1
2019-07-11
@w
4.9.1 How to Calculate Compensated Pressure Values
Steps
1. Read the pressure calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration
Coefficient register.
Note: The coefficients read from the coefficient register are 2's complement numbers.
2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate. The
scaling factors are listed in Table 9.
3. Read the pressure and temperature result from the registers or FIFO.
Note: The measurements read from the result registers (or FIFO) are 24 bit 2´s complement numbers.
Depending on the chosen measurement rates, the temperature may not have been measured
since the last pressure measurement.
4. Calculate scaled measurement results.
Traw_sc = Traw/kT
Praw_sc = Praw/kP
5. Calculate compensated measurement results.
Pcomp(Pa) = c00 + Praw_sc*(c10 + Praw_sc *(c20+ Praw_sc *c30)) + Traw_sc *c01 +
Traw_sc *Praw_sc *(c11+Praw_sc*c21)
4.9.2 How to Calculate Compensated Temperature Values
Steps
1. Read the temperature calibration coefficients ( c0 and c1 ) from the Calibration Coefficients (COEF)
register.
Note: The coefficients read from the coefficient register are 12 bit 2´s complement numbers.
2. Choose scaling factor kT (for temperature) based on the chosen precision rate. The scaling factors are
listed in Table 9.
3. Read the temperature result from the temperature register or FIFO.
Note: The temperature measurements read from the temperature result register (or FIFO) are 24 bit 2
´s complement numbers.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
14 V1.1
2019-07-11
@w
4. Calculate scaled measurement results.
Traw_sc = Traw/kT
5. Calculate compensated measurement results.
Tcomp (°C) = c0*0.5 + c1*Traw_sc
4.9.3 Compensation Scale Factors
Table 9 Compensation Scale Factors
Oversampling Rate Scale Factor (kP or kT) Result shift ( bit 2and 3 address
0x09)
1 (single) 524288 0
2 times (Low Power) 1572864 0
4 times 3670016 0
8 times 7864320 0
16 times (Standard) 253952 enable pressure or temperature
shift
32 times 516096 enable pressure or temperature
shift
64 times (High Precision) 1040384 enable pressure or temperature
shift
128 times 2088960 enable pressure or temperature
shift
4.9.4 Pressure and Temperature calculation flow
The flow chart below describes the Pressure and Temperature calculate
Figure 6 Pressure and temperature calculation flow
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
15 V1.1
2019-07-11
Stan ‘ um from reg mm [a man Wm: to resume (a... gunman (mfgummu) wma to re. M7 {vane acne-vast»: (Mariam) Write (o ream (van: mama" (Mgummu) —> wme um wmeum YES mm: was Read veg 0203 m veg anus (atulateiemyxmuz torenma um rqflmm reg am Cakulme Prague Loop7 infineon
See also How to Calculate Compensated Pressure Values and How to Calculate Compensated Temperature
Values
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
4 Functional Description
16 V1.1
2019-07-11
@w
5 Applications
5.1 Measurement Settings and Use Case Examples
Table 10 Measurement Settings and Use Case Examples (TBD)
Use Case Performance Pressure Register
Configuration
Address: 0x06
Temperature
Register
Configuration
Address: 0x07
Other
Weather Station (Low power) 5 Pa precision.
1 pr sec.
3 uA
0x01 0x80 Start
background
measurements
(addr 0x08)
Indoor navigation (Standard
precision, background mode)
10 cm precision.
2 pr sec.
22 uA
0x14 0x90 Enable P shift
(addr 0x09)
Start
background
measurements
(addr 0x08)
Sports (High precision, high
rate, background mode)
5 cm precision
4 pr sec.
200 uA
0x26 0xA0 Enable P shift
(addr 0x09)
Start
background
measurements
(addr 0x08)
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
5 Applications
17 V1.1
2019-07-11
inflneon Processor Vomo Pressure Sensor R SDA E} E ‘ I} SDI VDDIO EW 1.2 to 3.6 v 11C Serial V C‘ Interface "mo-9‘7 1: SCK E] I} SCK (ENDS—1 Interru t o twonal INT E3- -------- E LP ------ )- -------- -E E 500 GNDaj §(R1) . -’n 6E3 CSB VDD E}—_L—<:| 1.7="" to="" 3.6v="" c7="" 1;="" processor="" pressure="" sensor="" 7‘="" 7“="" vddio=""><:| 1.2="" to="" 3.6="" v="" sp1="" senal="" scl="" “="" u="" sck="" c.="" i="" interface="" mosiee="" {1="" sd!="" gndebj="" mlsoej="" k="" 500="" gndaj="" ss="" 7‘="" e="" csb="" vdd=""><:| 1.7="" to="" 3.6v="" c7="" i="" processor="" pressure="" sensor="" 7‘="" 7“="" vddio=""><:| 1.2="" to="" 3.6="" v="" sp1="" senal="" scl="" “="" u="" sck="" c.="" i="" interface="" 10="" e}="" {1="" sd!="" gndea—j="" es="" 500="" gndej="" ce="" 7‘="" e="" csb="" vdd=""><:| 1.7="" to="" 3.6v="">
The examples application circuit uses the I2C and SPI serial interface. The SDO pin can be used for interrupt or
to set least significant bit of the device address. The DPS310 analog core supply voltage is internally regulated
,guaranteeing robustness to external VDD supply variations within the specified range. The simplest voltage
supply solution is to connect VDD and VDDIO to 1.8V supply and add a suitable decoupling capacitor to reduce
VDD ripple below 50mVpp.
5.2 Application Circuit Example
Figure 7 Application Circuit Example using the I2C serial interface.
Figure 8 Application Circuit Example using the SPI 4-wires serial interface
Figure 9 Application Circuit Example using the SPI 3-wire serial interface
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
5 Applications
18 V1.1
2019-07-11
infineon Processor Pressure Sensor n n VDDIO EW 1.2 to 3.6 v SP1 Senal SCL u u SCK C. 1: Interface 10,00 {1 SD! GNDEE—j 1071C {I sue GNDEj ss 7‘ E] CSB VDD E§—_L—<:| 1.7="" to="" 3.6v="" c;="" i="">
Figure 10 Application Circuit Example using the SPI 3-wire with interrupt interface
Table 11 Component Values
Component Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Pull-up/down Resistor R1, R2 10
R3 100 R3 is optional and will set
the address to 0x76 instead
of 0x77.
Supply Blocking Capacitor C1, C2100 100 nF The blocking capacitors
should be placed as close
to the package pins as
possible.
5.3 IIR filtering
The air pressure is slowly changing due to weather conditions or short term changing like air turbulence created
by a fan, slamming a door or window. All these disturbances can be suppressed or triggered on the software
application level by implementing different IIR filtering.
Same sensor can be used by different software applications applying different IIR filtering to the raw data like
low pass, high pass or band pass filtering.
6 Digital interfaces
The DPS310 measurement data, calibration coefficients, Product ID and configuration registers can be accessed
through both the I2C and SPI serial interfaces.
The SPI interface can configured to operate in 3-wire or 4-wire mode. In I2C and SPI 3-wire, an interrupt output
can be implemented on the SDO pin. The SPI interface support mode '11' only ( CPOL=CPHA='1' ) in 4-wire and
3-wire configuration. The following commands are supported: single byte write, single byte read and multiple
byte read using auto increment from a specified start address. The interface selection is done based on CSB pin
status. If CSB is connected to VDDIO, the I2C interface is active. If CSB is low, the SPI interface is active. After the
CSB has been pulled down once the I2C interface is disabled until the next power-on-reset.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Digital interfaces
19 V1.1
2019-07-11
infineon I”? \ a fi 7 1 F m f : x / /\_ _ \ <_ _="" 1="" ‘="" msb="" acknwdedgment="" aduwwledgement="" ‘="" |="" ‘="" 5.3“.="" m="" m="" 5.3".="" m="" mm="" ‘="" ‘="" r="" \="" a—h="" «iq—w.="" ‘="" fl\\="" ’x="" m="" .\="" fikfl="" ‘="" 1="" m="" ,="" 7="" 7="" \="" \_/="" \="" e="" j="" j="" m="" aek="" ‘="" “unnamed="" 5mm...”="" we="" mm="" plan.="" inlermm="" wl="" m="" m.="" \="" if="" 55="" 510?="" or="" vepeamd="" cum="" ime="" held="" law="" while="" mnmmm="" inlemmlsare="" mm:="" wm="" mm="" mznd="" m="" mam="" m="" swam“="" [wm]="" nemmmqu="" wmmam="" mm="" ila-l="" dpsajo="" “gm,="" siam="" aacknowledge="" p="" ion="" m="" not="" mknowledge="" w="" write="" mixer="" r="" lead="" slave="" ‘51="" suwzadduus="" [ma]="" reg'meraddressti="" rm="" mam="" register,="" auwina'ement="" __flfl="" m="" smvraddm="" [rm="" reglsladalaldx»="" m="" "7="" immmnqmmm="" suwuddres="" ira="" wanna»="" n|p|="">
6.1 I2C Interface
The I2C slave interface is compatible with Philips I2C Specification version 2.1. The I2C interface supports
standard, fast and high speed mode.
The sensor's address is 0x77 (if SDO pin is left floating or pulled-up to VDDIO) or 0x76 (if the SDO pin is pulled-
down to GND). The I2C interface uses the pins described in Table 2
The basic timing is shown in the diagram below:
Figure 11 I2C timing diagram
In one access, without stop, incremental read (address is auto increment) and auto-incremental write is
supported. The read and write access is described below:
Figure 12 I2C write and read commands
6.2 SPI Interface
The SPI interface is compatible with SPI mode '11' ( CPOL = CPHA = '1'. The SPI interface has two modes: 4-wire
and 3-wire.
The protocol is the same for both. The 3-wire mode is selected by setting '1' to the register Interrupt and FIFO
configuration (CFG_REG)
The SPI interface uses the pins like in theTable 2 Refere toApplication Circuit Example for connections
instructions. The SPI protocol is shown in the diagram below:
Figure 13 SPI protocol, 4-wire without interrupt
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Digital interfaces
20 V1.1
2019-07-11
(ifieon Single byte W/R in 4 wire SPI: (33 [um] CSIo [5M] SCI. I SCLhiI SCL I SCH“ I so: m Mdras<6=o> Datao ut<7:0> Single byte W/R in 3 wire SPI: CSB [ISMH CSIo [um] sq. [SCLhiI sq [SCLhiI so- _— Multi byte R in 3 wire SPI (SB ISM” c“, lCShiI sq. | SCL h“ sq | SCLhi I SDI m4 AddmsKSjb | Davaoqutb | W71» | Multi byte R in 4 wire SPI as. Ian m, IMI SCI. |scud| sq ISLLhiI sol _ soo
A SPI write is carried out by setting CSB low and sending a control byte followed by register data. The control
byte consist of the SPI register address ( full register address without bit 7) and the write command ( bit7 = RW =
'0'). Setting CSB high ends the transaction. The SPI write protocol is described in the diagram below.
A SPI read is initiated by setting CSB low and sending a single control byte. The control byte consist of the SPI
register address ( = full register address without bit 7) and the read command ( bit7 = RW = '1'). After writing the
control byte, data is sent out of the SDO pin ( SDI in 3-wire mode); the register address is automatically
incremented. Sending CSB high ends the SPI read transaction. The SPI read protocol is shown in the diagram
below:
Figure 14 SPI write, read protocol diagrams
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Digital interfaces
21 V1.1
2019-07-11
@w
6.3 Interface parameters specification
6.3.1 General interface parameters
The general interface parameters are given in the table below:
Table 12 Interface parameters
Parameter Symbol Values Unit Note or Test
Condition
Min. Typ. Max.
Input voltage for low logic
level at input pins
Vlow_in 0.3 *
VDDIO
V VDDIO=1.2V to 3.6V
Input voltage for high logic
level at input pins
Vhigh_in 0.7 *
VDDIO
V VDDIO=1.2V to 3.6V
Output - low level for I2C Vlow_SDI 0.1 *
VDDIO
V VDDIO=1.8V,
iol=2mA
Output voltage for low level
at pin SDI for I2C
Vlow_SDI_1.2 0.2*
VDDIO
V VDDIO=1.20V,
iol=1.3mA
Output voltage for high level
at pins SDO, SDI
Vhigh_out 0.8 *
VDDIO
V VDDIO=1.8V,
iol=1mA (SDO,
SDI)
Output voltage for high level
at pins SDO, SDI
Vhigh_out_1.2 0.6 *
VDDIO
V VDDIO=1.2V,
iol=1mA (SDO,
SDI)
Pull-up resistor Rpull 60 120 180 kohm Internal pull-up
resistance to VDDIO
I2C bus load capacitor Cb 400 pF On SDI and SCK
6.3.1.1 I2C timings
The I2C timing is shown in the diagram below and corresponding values are given in the table below. The
naming refers to I2C Specification version 2.1, the abbreviations used "S&F mode" = standard and fast mode,
"HS mode" = high speed mode, Cb = bus capacitance on SDA line.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Digital interfaces
22 V1.1
2019-07-11
infineon _ _ J sum or ravemgd mm mndlllnn r 1 a 71 VP / f / ‘ : \I / X ><_ ix="" x=""> .‘ X ‘ l M55 knows“... :4“leme ‘ r w l l signal hum :Iave Siylal 6mm renewal \ 1 4‘—r 7 ‘ l \ /k / \ j ’_\ F he \ / \ / ‘ lmun\//“_,,/’\/“\/9\ /'\ F\/3‘“\/9\ /: ‘ m/ \ m ‘ggg ane um Dlete. immum wlhm swim Data transler on the llcibus Clock um- P—‘I \‘ ’l w ‘ ‘K I :/ ‘ : 1 / m : 4v ‘ . I: 1% . ‘ I : DutCIe‘ . ”LE“ ow lme held lUmelE imzrm m; are Ssmced
Figure 15 I2C timing diagram
Table 13 I2C timings
Parameter Symbol Values Unit Note or Test
Condition
Min. Typ. Max.
Data setup time on SDI pin tSetup 20 ns S&F mode
5 ns HS mode
Data hold time on SDI pin tHold 0 ns S&F&HSmode,
Duty Cycle DC 70 % S&F mode,
55 % HS mode,
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Digital interfaces
23 V1.1
2019-07-11
@w
6.3.1.2 SPI timings
The SPI timing diagram is shown in the figure below and the corresponding values are given in the table below.
All timings apply both to 4-wire and 3-wire SPI.
Figure 16 SPI timing diagram
Table 14 SPI timings
Parameter Symbol Values Unit Note or Test
Condition
Min. Typ. Max.
Duty Cycle (Thigh%) SPI_DC 30 % VDDIO = 1.2V
20 % VDDIO = 1.8V/3.6V
SDI setup time T_setup_sdi 2 ns
SDI hold time T_hold_sdi 2 ns
Clock SPI_CLK 10 MHz
CSB setup time T_setup_csb 15 ns
CSB hold time 15 ns
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Digital interfaces
24 V1.1
2019-07-11
@w
7 Register Map
Table 15 Register Map
Register
Name
Addr. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Reset
State
PSR_B2 0x00 PSR[23:16] (r) 00h
PSR_B1 0x01 PSR[15:8](r) 00h
PSR_B0 0x02 PSR[7:0](r) 00h
TMP_B2 0x03 TMP[23:16] (r) 00h
TMP_B1 0x04 TMP[15:8] (r) 00h
TMP_B0 0x05 TMP[7:0] (r) 00h
PRS_CFG 0x06 - PM_RATE [2:0] (rw) PM_PRC [3:0] (rw) 00h
TMP_CFG 0x07 TMP_
EXT
(rw)
TMP_RATE [2:0] (rw) TM_PRC [3:0] (rw) 00h
MEAS_CFG 0x08 COEF_
RDY (r)
SENSOR
_ RDY (r)
TMP_
RDY (r)
PRS_
RDY (r)
- MEAS_CRTL [2:0] (rw) C0h
CFG_REG 0x09 INT_ HL
(rw)
INT_ SEL [2:0] (rw) TMP_
SHIFT_
EN (rw)
PRS_
SHIFT_
EN (rw)
FIFO_
EN (rw)
SPI_
MODE
(rw)
00h
INT_STS 0x0A - - - - - INT_
FIFO_
FULL (r)
INT_
TMP(r)
INT_
PRS(r)
00h
FIFO_STS 0x0B - - - - - - FIFO_
FULL(r)
FIFO_
EMPTY(r)
00h
RESET 0x0C FIFO_
FLUSH
(w)
- - - SOFT_RST [3:0] (w) 00h
Product ID 0x0D REV_ID [3:0] (r) PROD_ID [3:0] (r) 10h
COEF 0x10-
0x21
< see register description > XXh
Reserved 0x22-
0x27
Reserved XXh
COEF_SRCE 0x28 TMP_C
OEF_SR
CE (r)
Reserved XXh
8 Register description
8.1 Pressure Data (PRS_Bn)
The Pressure Data registers contains the 24 bit (3 bytes) 2's complement pressure measurement value.
If the FIFO is enabled, the register will contain the FIFO pressure and/or temperature results. Otherwise, the
register contains the pressure measurement results and will not be cleared after read.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register Map
25 V1.1
2019-07-11
@w
8.1.1 PRS_B2
The highest byte of the three bytes measured pressure value.
PRS_B2 Address: 00H
Pressure (MSB data) Reset value: 00H
7 6 5 4 3 2 1 0
PRS23 PRS22 PRS21 PRS20 PRS19 PRS18 PRS17 PRS16
r
Field Bits Type Description
PRS[23:16] 7:0 r MSB of 24 bit 2´s complement pressure data.
8.1.2 PRS_B1
The middle byte of the three bytes measured pressure value.
PRS_B1 Address: 01H
Pressure (LSB data) Reset value: 00H
7 6 5 4 3 2 1 0
PRS15 PRS14 PRS13 PRS12 PRS11 PRS10 PRS9 PRS8-
r
Field Bits Type Description
PRS[15:8] 7:0 r LSB of 24 bit 2´s complement pressure data.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
26 V1.1
2019-07-11
@w
8.1.3 PRS_B0
The lowest byte of the three bytes measured pressure value.
PRS_B0 Address: 02H
Pressure (XLSB data) Reset value: 00H
7 6 5 4 3 2 1 0
PRS7 PRS6 PRS5 PRS4 PRS3 PRS2 PRS1 PRS0
r
Field Bits Type Description
PRS[7:0] 7:0 r XLSB of 24 bit 2´s complement pressure data.
8.2 Temperature Data (TMP_Tn)
The Temperature Data registers contain the 24 bit (3 bytes) 2's complement temperature measurement value
( unless the FIFO is enabled, please see FIFO operation ) and will not be cleared after the read.
8.2.1 TMP_B2
The highest byte of the three bytes measured temperature value.
TMP_B2 Address: 03H
Temperature (MSB data) Reset value: 00H
7 6 5 4 3 2 1 0
TMP23 TMP22 TMP21 TMP20 TMP19 TMP18 TMP17 TMP16
r
Field Bits Type Description
TMP[23:16] 7:0 r MSB of 24 bit 2´s complement temperature data.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
27 V1.1
2019-07-11
@w
8.2.2 TMP_B1
The middle byte of the three bytes measured temperature value.
TMP_B1 Address: 04H
Temperature (LSB data) Reset value: 00H
7 6 5 4 3 2 1 0
TMP15 TMP14 TMP13 TMP12 TMP11 TMP10 TMP9 TMP8
r
Field Bits Type Description
TMP[15:8] 7:0 r LSB of 24 bit 2´s complement temperature data.
8.2.3 TMP_B0
The lowest part of the three bytes measured temperature value.
TMP_B0 Address: 05H
Temperature (XLSB data) Reset value: 00H
7 6 5 4 3 2 1 0
TMP7 TMP6 TMP5 TMP4 TMP3 TMP2 TMP1 TMP0
r
Field Bits Type Description
TMP[7:0] 7:0 r XLSB of 24 bit 2´s complement temperature data.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
28 V1.1
2019-07-11
@w
8.3 Pressure Configuration (PRS_CFG)
Configuration of pressure measurement rate (PM_RATE) and resolution (PM_PRC).
PRS_CFG Address: 06H
Pressure measurement configuration Reset value: 00H
7 6 5 4 3 2 1 0
- PM_RATE[2:0] PM_PRC[3:0]
- rw rw
Field Bits Type Description
- 7 - Reserved.
PM_RATE[2:0] 6:4 rw Pressure measurement rate:
000 - 1 measurements pr. sec.
001 - 2 measurements pr. sec.
010 - 4 measurements pr. sec.
011 - 8 measurements pr. sec.
100 - 16 measurements pr. sec.
101 - 32 measurements pr. sec.
110 - 64 measurements pr. sec.
111 - 128 measurements pr. sec.
Applicable for measurements in Background mode only
PM_PRC[3:0] 3:0 rw Pressure oversampling rate:
0000 - Single. (Low Precision)
0001 - 2 times (Low Power).
0010 - 4 times.
0011 - 8 times.
0100 *)- 16 times (Standard).
0101 *) - 32 times.
0110 *) - 64 times (High Precision).
0111 *) - 128 times.
1xxx - Reserved
*) Note: Use in combination with a bit shift. See Interrupt and FIFO configuration (CFG_REG) register
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
29 V1.1
2019-07-11
@w
Table 16 Precision (PaRMS) and pressure measurement time (ms) versus oversampling rate
Oversampling
(PRC[3:0])
Single
(0000)
2 times
(0001)
4 times
(0010)
8 times
(0011)
16 times
(0100)
32 times
(0101)
64 times
(0110)
128
times
(0111)
Measurement time
(ms)
3.6 5.2 8.4 14.8 27.6 53.2 104.4 206.8
Precision (PaRMS) 2.5 1 0.5 0.4 0.35 0.3 0.2
Table 17 Estimated current consumption (uA)
Oversampling
(PRC[3:0])
Single
(0000)
2 times
(0001)
4 times
(0010)
8 times
(0011)
16 times
(0100)
32 times
(0101)
64 times
(0110)
128
times
(0111)
Measurements pr
sec.
(PM_RATE([2:0])
1 (000) 2.1 2.7 3.8 6.1 11 20 38 75
2 (001)
4 (010)
8 (011) Note: The current consumption can be calculated as the Measurement Rate *
Current Consumption of 1 measurement per. sec.
n.a.
16 (100) n.a. n.a.
32 (101) n.a. n.a. n.a.
64 (110) n.a. n.a. n.a. n.a.
128 (111) n.a. n.a. n.a. n.a. n.a. n.a.
Note: The table shows the possible combinations of Pressure Measurement Rate and oversampling when no
temperature measurements are performed. When temperature measurements are performed the possible
combinations are limited to Ratetemperature x Measurement Timetemperature + Ratepressure x Measurement
Timepressure < 1 second.
The temperature measurement time versus temperature oversampling rate is similar with pressure
measurement time versus pressure oversampling rate
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
30 V1.1
2019-07-11
@w
8.4 Temperature Configuration(TMP_CFG)
Configuration of temperature measurement rate (TMP_RATE) and resolution (TMP_PRC).
TMP_CFG Address: 07H
Temperature measurement configuration Reset value: 00H
7 6 5 4 3 2 1 0
TMP_EXT TMP_RATE[6:4] TMP_PRC[3:0]
rw rw - rw
Field Bits Type Description
TMP_EXT 7 rw Temperature measurement
0 - Internal sensor (in ASIC)
1 - External sensor (in pressure sensor MEMS element)
Note: It is highly recommended to use the same temperature
sensor as the source of the calibration coefficients. Please see the
Coefficient Source register
TMP_RATE[2:0] 6:4 rw Temperature measurement rate:
000 - 1 measurement pr. sec.
001 - 2 measurements pr. sec.
010 - 4 measurements pr. sec.
011 - 8 measurements pr. sec.
100 - 16 measurements pr. sec.
101 - 32 measurements pr. sec.
110 - 64 measurements pr. sec.
111 - 128 measurements pr. sec..
Applicable for measurements in Background mode only
TMP_PRC[2:0] 3:0 rw Temperature oversampling (precision):
0000 - single. (Default) - Measurement time 3.6 ms.
Note: Following are optional, and may not be relevant:
0001 - 2 times.
0010 - 4 times.
0011 - 8 times.
0100 - 16 times.
0101 - 32 times.
0110 - 64 times..
0111 - 128 times.
1xxx - Reserved.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
31 V1.1
2019-07-11
@w
8.5 Sensor Operating Mode and Status (MEAS_CFG)
Setup measurement mode.
MEAS_CFG Address: 08H
Measurement configuration Reset value: C0H
7 6 5 4 3 2 1 0
COEF_RDY SENSOR_R
DY TMP_RDY PRS_RDY - MEAS_CTRL
r r r r - rw
Field Bits Type Description
COEF_RDY 7 r Coefficients will be read to the Coefficents Registers after start-
up:
0 - Coefficients are not available yet.
1 - Coefficients are available.
SENSOR_RDY 6 r The pressure sensor is running through self initialization after
start-up.
0 - Sensor initialization not complete
1 - Sensor initialization complete
It is recommend not to start measurements until the sensor has
completed the self intialization.
TMP_RDY 5 r Temperature measurement ready
1 - New temperature measurement is ready. Cleared when
temperature measurement is read.
PRS_RDY 4 r Pressure measurement ready
1 - New pressure measurement is ready. Cleared when
pressurement measurement is read.
- 3 - Reserved.
MEAS_CTRL 2:0 rw Set measurement mode and type:
Standby Mode
000 - Idle / Stop background measurement
Command Mode
001 - Pressure measurement
010 - Temperature measurement
011 - na.
100 - na.
Background Mode
101 - Continous pressure measurement
110 - Continous temperature measurement
111 - Continous pressure and temperature measurement
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
32 V1.1
2019-07-11
@w
8.6 Interrupt and FIFO configuration (CFG_REG)
Configuration of interupts, measurement data shift, and FIFO enable.
CFG_REG Address: 09H
Configuration register Reset value: 00H
7 6 5 4 3 2 1 0
INT_HL INT_FIFO INT_TMP INT_PRS T_SHIFT P_SHIFT FIFO_EN SPI_MODE
rw rw rw rw rw rw rw rw
Field Bits Type Description
INT_HL 7 rw Interupt (on SDO pin) active level:
0 - Active low.
1 - Active high.
INT_FIFO 6 rw Generate interupt when the FIFO is full:
0 - Disable.
1 - Enable.
INT_TMP 5 rw Generate interupt when a temperature measurement is ready:
0 - Disable.
1 - Enable.
INT_PRS 4 rw Generate interupt when a pressure measurement is ready:
0 - Disable.
1 - Enable.
T_SHIFT 3 rw Temperature result bit-shift
0 - no shift.
1 - shift result right in data register.
Note: Must be set to '1' when the oversampling rate is >8 times.
P_SHIFT 2 rw Pressure result bit-shift
0 - no shift.
1 - shift result right in data register.
Note: Must be set to '1' when the oversampling rate is >8 times.
FIFO_EN 1 rw Enable the FIFO:
0 - Disable.
1 - Enable.
SPI_MODE 0 rw Set SPI mode:
0 - 4-wire interface.
1 - 3-wire interface.
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
33 V1.1
2019-07-11
@w
8.7 Interrupt Status (INT_STS)
Interrupt status register. The register is cleared on read.
INT_STS Address: 0AH
Interrupt status Reset value: 00H
7 6 5 4 3 2 1 0
-INT_FIFO_F
ULL INT_TMP INT_PRS
- r r r
Field Bits Type Description
- 7:3 - Reserved.
INT_FIFO_FULL 2 r Status of FIFO interrupt
0 - Interrupt not active
1 - Interrupt active
INT_TMP 1 r Status of temperature measurement interrupt
0 - Interrupt not active
1 - Interrupt active
INT_PRS 0 r Status of pressure measurement interrupt
0 - Interrupt not active
1 - Interrupt active
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
34 V1.1
2019-07-11
@w
8.8 FIFO Status (FIFO_STS)
FIFO status register
FIFO_STS Address: 0BH
FIFO status register Reset value: 00H
7 6 5 4 3 2 1 0
- FIFO_FULL FIFO_EMPT
Y
- r r
Field Bits Type Description
- 7:2 - Reserved.
FIFO_FULL 1 r 0 - The FIFO is not full
1 - The FIFO is full
FIFO_EMPTY 0 r 0 - The FIFO is not empty
1 - The FIFO is empty
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
35 V1.1
2019-07-11
@w
8.9 Soft Reset and FIFO flush (RESET)
Flush FIFO or generate soft reset.
RESET Address: 0CH
FIFO flush and soft reset Reset value: 00H
7 6 5 4 3 2 1 0
FIFO_FLUSH - SOFT_RST
w - w
Field Bits Type Description
FIFO_FLUSH 7 w FIFO flush
1 - Empty FIFO
After reading out all data from the FIFO, write '1' to clear all old
data.
- 6:4 - Reserved.
SOFT_RST 3:0 w Write '1001' to generate a soft reset. A soft reset will run though
the same sequences as in power-on reset.
8.10 Product and Revision ID (ID)
Product and Revision ID.
ID Address: 0DH
Product and revision ID Reset value: 0x10H
7 6 5 4 3 2 1 0
REV_ID PROD_ID
r r
Field Bits Type Description
REV_ID 7:4 r Revision ID
PROD_ID 3:0 r Product ID
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
36 V1.1
2019-07-11
@w
8.11 Calibration Coefficients (COEF)
The Calibration Coefficients register contains the 2´s complement coefficients that are used to calculate the
compensated pressure and temperature values.
Table 18 Calibration Coefficients
Coefficient Addr. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
c0 0x10 c0 [11:4]
c0/c1 0x11 c0 [3:0] c1 [11:8]
c1 0x12 c1[7:0]
c00 0x13 c00 [19:12]
c00 0x14 c00 [11:4]
c00/c10 0x15 c00 [3:0] c10 [19:16]
c10 0x16 c10 [15:8]
c10 0x17 c10 [7:0]
c01 0x18 c01 [15:8]
c01 0x19 c01 [7:0]
c11 0x1A c11 [15:8]
c11 0x1B c11 [7:0]
c20 0x1C c20 [15:8]
c20 0x1D c20 [7:0]
c21 0x1E c21 [15:8]
c21 0x1F c21 [7:0]
c30 0x20 c30 [15:8]
c30 0x21 c30 [7:0]
Note: Generate the decimal numbers out of the calibration coefficients registers data:
C20 := reg0x1D + reg0x1C * 2^ 8
if (C20 > (2^15 - 1))
C20 := C20 - 2^16
end if
C0 := (reg0x10 * 2^ 4) + ((reg0x11 / 2^4) & 0x0F)
if (C0 > (2^11 - 1))
C0 := C0 - 2^12
end if
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Register description
37 V1.1
2019-07-11
@w
8.12 Coefficient Source
States which internal temperature sensor the calibration coefficients are based on: the ASIC temperature sensor
or the MEMS element temperature sensor. The coefficients are only valid for one sensor and it is highly
recommended to use the same temperature sensor in the application. This is set-up in the Temperature
Configuration register.
TMP_COEF_SRCE Address: 28H
Temperature Coefficients Source Reset value: XXH
7 6 5 4 3 2 1 0
TMP_COEF_
SRCE -
r -
Field Bits Type Description
TMP_COEF_SRCE 7 r Temperature coefficients are based on:
0 - Internal temperature sensor (of ASIC)
1 - External temperature sensor (of pressure sensor MEMS
element)
- 6:0 - Reserved
9 Package Dimensions
The sensor package is a 8-pin PG-VLGA-8-2, 2.0 x 2.5 x 1.1 mm3, with 0.65 mm pitch.
10 Package Handling
Further Information please refer to the attached “Digital Barometric Pressure Sensor_ Package Handling”. It
describes the package handling and delivery format.
11 Reflow soldering and board assembly
The Infineon pressure sensors are qualified in accordance with the IPC/JEDEC J-STD-020D-01. The moisture
sensitivity level of pressure sensor is rated as MSL1. For PCB assembly of the sensor the widely used reflow
soldering using a forced convection oven is recommended.
The soldering profile should be in accordance with the recommendations of the solder paste manufacturer to
reach an optimal solder joint quality. The reflow profile shown in figure below is recommended for board
manufacturing with Infineon pressure sensors.
Figure 17 Reflow profile
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Package Dimensions
38 V1.1
2019-07-11
@w Temperature =9 <—t 25°c="" to="" peak="" time="" i="$"> Critical Zone TL 10 Tp
Table 19 Reflow profile limits
Profile feature Pb-Free assembly Sn-Pb Eutectic assembly
Preheat/Soak
Temperature Min (Tsmin) 150 °C 100 °C
Temperature Max (Tsmax) 200 °C 150 °C
Time (Tsmin to Tsmax) (ts) 60-120 seconds 60-150 seconds
Peak Temperature (Tp) 260°C +0°C/-5°C 235°C +0°C/-5°C
Time within 5°C of actual peak
temperature (tp)*
20-40 seconds 10-30 seconds
Ramp-down rate 6 °C/second max. 6 °C/second max.
Time 25°C to peak temperature 8 minutes max. 6 minutes max.
* Tolerance for peak profile temperature (Tp) is defined as a supplier
minimum and a user maximum
Note: For further information please consult the 'General recommendation for assembly of Infineon
packages' document which is available on the Infineon Technologies web page
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Reflow soldering and board assembly
39 V1.1
2019-07-11
@w
The Infineon pressure sensors can be handled using industry standard pick and place equipment. Care should
be taken to avoid damage to the sensor structure as follows:
Do not pick the sensor with vacuum tools which make contact with the sensor vent port hole
The sensor's vent hole should not be exposed to vacuum, this can destroy or damage the MEMS
Do not blow air into the sensor vent hole. If an air blow cleaning process is used, the vent hole must be
sealed to prevent particle contamination.
It is recommended to perform the PCB assembly in a clean room environment in order to avoid sensor
contamination.
Air blow and ultrasonic cleaning procedures shall not be applied to MEMS pressure sensors. A non-clean
paste is recommended for the assembly to avoid subsequent cleaning steps. The MEMS sensor can be
severely damaged by cleaning substances.
To prevent the blocking or partial blocking of vent hole during PCB assembly, it is recommended to cover
the sound port with protective tape during PCB sawing or system assembly.
Do not use excessive force to place the sensor on the PCB. The use of industry standard pick and place tools
is recommended in order to limit the mechanical force exerted to the package.
Revision History
Major changes since previous revision
Revision History
Reference Description
1.0 Initial released
1.1 Title update; table 7 update, add reflow soldering chapter
Known Issues List
Known Issues
Product and
Revision ID
Description
DPS310
Digital XENSIVTM Barometric Pressure Sensor for Portable Devices
Revision History
40 V1.1
2019-07-11
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2019-07-11
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2019 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-sch1406115644540
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical values
stated herein and/or any information regarding the
application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of
any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury