Infineon Technologies 的 IRGP4069D(-E)PbF 规格书

International ISBR Rectitier Absolute Maximum Ratin s c c c c r c e: u 0 sm Thermal Resistance Re Re Re Re C E E G C E Gale Colleclor Emitter
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGP4069DPbF
IRGP4069D-EPbF
PD - 97425
1www.irf.com
10/2/09
E
G
n-channel
C
VCES = 600V
IC(Nominal) = 35A
tSC 5μs, TJ(max) = 175°C
VCE(on) typ. = 1.6V
G
C
E
Gate Collector Emitter
TO-247AC
IRGP4069DPbF
TO-247AD
IRGP4069D-EPbF
GCE
C
GCE
C
Features
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
•5 μS short circuit SOA
Square RBSOA
100% of The Parts Tested for ILM
Positive VCE (ON) Temperature Coefficient
Tight Parameter Distribution
Lead Free Package
Benefits
High Efficiency in a Wide Range of Applications
Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
Rugged Transient Performance for Increased Reliability
Excellent Current Sharing in Parallel Operation
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Voltage 600 V
I
C
@ T
C
= 25°C Continuous Collector Current 76
I
C
@ T
C
= 100°C Continuous Collector Current 50
I
NOMINAL
Nominal Current 35
I
CM
Pulse Collector Current, V
GE
= 15V 105 A
I
LM
Clamped Inductive Load Current, V
GE
= 20V 140
I
F
@ T
C
= 25°C Diode Continous Forward Current 76
I
F
@ T
C
= 100°C Diode Continous Forward Current 50
I
FM
Diode Maximum Forward Current 140
V
GE
Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
P
D
@ T
C
= 25°C Maximum Power Dissipation 268 W
P
D
@ T
C
= 100°C Maximum Power Dissipation 134
T
J
Operating Junction and -55 to +175
T
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
(IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– ––– 0.56 °C/W
R
θJC
(Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.0
R
θCS
Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 –––
R
θJA
Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40
Internationo‘ IEER Rectifier
IRGP4069DPbF/IRGP4069D-EPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 19μH, RG = 10Ω.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600——V
V
GE
= 0V, I
C
= 100μA
ΔV
(BR)CES
/ΔT
J
Temperature Coeff. of Breakdown Voltage
—1.3—mV/°C
V
GE
= 0V, I
C
= 1mA (2C-175°C)
1.6 1.85 I
C
= 35A, V
GE
= 15V, T
J
= 25°C
V
CE(on)
Collector-to-Emitter Saturation Voltage 1.9 V I
C
= 35A, V
GE
= 15V, T
J
= 15C
—2.0— I
C
= 35A, V
GE
= 15V, T
J
= 17C
V
GE(th)
Gate Threshold Voltage 4.0 6.5 V V
CE
= V
GE
, I
C
= 1.0mA
ΔV
GE(th)
/ΔTJ
Threshold Voltage temp. coefficient -18 mVC V
CE
= V
GE
, I
C
= 1.0mA (25°C - 175°C)
gfe Forward Transconductance 25 S V
CE
= 50V, I
C
= 35A, PW = 60μs
I
CES
Collector-to-Emitter Leakage Current 1.0 70 μAV
GE
= 0V, V
CE
= 600V
— 770 — V
GE
= 0V, V
CE
= 600V, T
J
= 17C
V
FM
Diode Forward Voltage Drop 2.2 3.8 V I
F
= 35A
—1.4— I
F
= 35A, T
J
= 17C
I
GES
Gate-to-Emitter Leakage Current ±100 nA V
GE
= ±20V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Q
g
Total Gate Charge (turn-on) 69 104 I
C
= 35A
Q
ge
Gate-to-Emitter Charge (turn-on) 18 27 nC V
GE
= 15V
Q
gc
Gate-to-Collector Charge (turn-on) 29 44 V
CC
= 400V
E
on
Turn-On Switching Loss 390 508 I
C
= 35A, V
CC
= 400V, V
GE
= 15V
E
off
Turn-Off Switching Loss 632 753 μJR
G
= 10Ω, L = 200μH, L
S
= 150nH, T
J
= 25°C
E
total
Total Switching Loss 1022 1261
Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 46 56 I
C
= 35A, V
CC
= 400V, V
GE
= 15V
t
r
Rise time 33 42 ns R
G
= 10Ω, L = 200μH, L
S
= 150nH, T
J
= 25°C
t
d(off)
Turn-Off delay time 105 117
t
f
Fall time 44 54
E
on
Turn-On Switching Loss 1013 I
C
= 35A, V
CC
= 400V, V
GE
=15V
E
off
Turn-Off Switching Loss 929 μJR
G
=10Ω, L=200μH, L
S
=150nH, T
J
= 175°C
E
total
Total Switching Loss 1942
Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 43 I
C
= 35A, V
CC
= 400V, V
GE
= 15V
t
r
Rise time 35 ns R
G
= 10
Ω
, L = 200μH, L
S
= 150nH
t
d(off)
Turn-Off delay time 127 T
J
= 175°C
t
f
Fall time 61
C
ies
Input Capacitance 2113 pF V
GE
= 0V
C
oes
Output Capacitance 197 V
CC
= 30V
C
res
Reverse Transfer Capacitance 65 f = 1.0Mhz
T
J
= 175°C, I
C
= 140A
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 480V, Vp =600V
Rg = 10
Ω
, V
GE
= +20V to 0V
SCSOA Short Circuit Safe Operating Area 5 μsV
CC
= 400V, Vp =600V
Rg = 10
Ω
, V
GE
= +15V to 0V
Erec Reverse Recovery Energy of the Diode 304 μJT
J
= 175°C
t
rr
Diode Reverse Recovery Time 120 ns V
CC
= 400V, I
F
= 35A
I
rr
Peak Reverse Recovery Current 25 A V
GE
= 15V, Rg = 10
Ω
, L =210μH, L
s
= 150nH
Conditions
Internationo‘ IEER Rectifier Tc : 25%: T1 : 175m
IRGP4069DPbF/IRGP4069D-EPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 60μs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 60μs
25 50 75 100 125 150 175
TC (°C)
0
10
20
30
40
50
60
70
80
IC (A)
25 50 75 100 125 150 175
TC (°C)
0
50
100
150
200
250
300
Ptot (W)
10 100 1000
VCE (V)
1
10
100
1000
IC (A)
0246810
VCE (V)
0
20
40
60
80
100
120
140
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810
VCE (V)
0
20
40
60
80
100
120
140
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
1 10 100 1000
VCE (V)
0.1
1
10
100
1000
IC (A)
10μsec
100μsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
1msec
Internationo‘ IEER Rectifier
IRGP4069DPbF/IRGP4069D-EPbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 60μs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 60μs
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
0246810
VCE (V)
0
20
40
60
80
100
120
140
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0.0 1.0 2.0 3.0 4.0
VF (V)
0
20
40
60
80
100
120
140
IF (A)
-40°C
25°C
175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 18A
ICE = 35A
ICE = 70A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 18A
ICE = 35A
ICE = 70A
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 18A
ICE = 35A
ICE = 70A
4 5 6 7 8 9 10 11 12 13 14
VGE, Gate-to-Emitter Voltage (V)
0
20
40
60
80
100
120
140
IC, Collector-to-Emitter Current (A)
TJ = 175°C
TJ = 25°C
Internationo‘ IEER Rectifier \\
IRGP4069DPbF/IRGP4069D-EPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
0 10203040506070
IC (A)
0
500
1000
1500
2000
2500
3000
3500
4000
Energy (μJ)
EOFF
E
ON
010 20 30 40 50 60 70
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 255075100
Rg (Ω)
500
1000
1500
2000
2500
3000
Energy (μJ)
EOFF
EON
010 20 30 40 50
RG (Ω)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
10 20 30 40 50 60 70
IF (A)
10
15
20
25
30
35
IRR (A)
RG = 100Ω
RG = 10Ω
RG = 22Ω
RG = 47Ω
020 40 60 80 100
RG (Ω)
14
16
18
20
22
24
26
IRR (A)
Internationo‘ IEER Rectifier / (”77‘ n K % \ >//’ / / | \ GI / A , G, / G: /// G o
IRGP4069DPbF/IRGP4069D-EPbF
6www.irf.com
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 35A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 35A; L = 740μH
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
0100 200 300 400 500
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 10203040506070
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES = 400V
VCES = 300V
200 300 400 500 600 700
diF /dt (A/μs)
14
16
18
20
22
24
26
IRR (A)
10 20 30 40 50 60 70
IF (A)
100
150
200
250
300
350
400
Energy (μJ)
RG = 100Ω
RG = 47Ω
RG = 22Ω
RG = 10Ω
8 1012141618
VGE (V)
0
5
10
15
20
Time (μs)
0
75
150
225
300
Current (A)
Tsc
Isc
100 200 300 400 500 600 700 800 900
diF /dt (A/μs)
1000
1250
1500
1750
2000
2250
2500
QRR (nC)
10Ω
22Ω
100Ω
47Ω
35A
70A
18A
Internationo‘ IEER Rectifier SINGLE PULSE 1. Duly Factor D :11/«2 Notes SINGLE PULSE I. Duty Factor D : n
IRGP4069DPbF/IRGP4069D-EPbF
www.irf.com 7
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.01041 0.000006
0.15911 0.000142
0.23643 0.002035
0.15465 0.013806
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.01716 0.000031
0.35875 0.000517
0.41334 0.004192
0.20121 0.024392
2%; HF Internationo‘ IEER Rectifier M /\
IRGP4069DPbF/IRGP4069D-EPbF
8www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
0
1K
VCCDUT
L
L
Rg
80 V
DUT VCC
+
-
Fig.C.T.5 - Resistive Load Circuit
Rg
VCC
DUT
R =
VCC
ICM
G force
C sens
e
100K
DUT
0.0075μF
D1 22K
E force
C force
E sense
Fig.C.T.6 - BVCES Filter Circuit
Fig.C.T.3 - S.C. SOA Circuit
DC
4X
DUT
VCC
SCSOA
Fig.C.T.4 - Switching Loss Circuit
L
Rg
VCC
DUT /
DRIVER
diode clamp /
DUT
-5V
GP 10 -10 0 I I I I I —-I ,— 90% 5% gE H R A R h H 5% vCE I _.l I‘— I I I I I / I I M—Eoff Loss ._______J_\.[__ w J Internationd 19R Rectifier
IRGP4069DPbF/IRGP4069D-EPbF
www.irf.com 9
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
-100
0
100
200
300
400
500
600
6.4 6.6 6.8 7 7.2
time (µs)
V
CE
(V)
-10
0
10
20
30
40
50
60
I
CE
(A)
TEST
CURRENT
90% test
current
5% V
CE
10% test
current
tr
Eon
Loss
-100
0
100
200
300
400
500
600
-0.5 0 0.5 1 1.5 2
time(µs)
VCE (V)
-10
0
10
20
30
40
50
60
ICE (A)
90% ICE
5% VCE
5% I
CE
Eof f Lo s s
tf
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
-100
0
100
200
300
400
500
600
700
-4.5 0.5 5.5 10.5
Time (uS)
Vce (V)
-50
0
50
100
150
200
250
300
350
I
CE
(A)
VCE
ICE
-30
-20
-10
0
10
20
30
40
-0.3 -0.2 -0.1 0 0.1 0.2
timeS)
V
F
(V)
Peak
I
RR
t
RR
Q
RR
10%
Pe a k
IRR
ImemOIIODOI IE2R RectIerr «mr I JWE‘IUIDHH‘ mu m [kfi‘"I\$ .2: E mu m :u 7 :Ivam: M v IA II, L; /x\ Lem r w A L IIE rx I A L I70 N ‘LIIVE NILI {LAW MI‘U rLAsN S‘HkLL w EXCEED r n :0: mu: m. V5 m m {II n M LLVEW‘JH Emma UF w L YHEMJJL HI‘ 1mm mww I‘I‘AEViI’lI-H n fa : Lm FNISH AcuwuLLu N U A? m HDLE A Nmmu mm WSLE or I e - m m: w» :r w: my Im A VJ-“YWLY HJLE ,wzm HF '34 IRCH m VU‘IE ray-mm: m m: mm mum WMLL :wa TIM/w m m», Ly; w «NM mm 3 ‘- L2 L I E, [7 r A [Hwy “3’ I 7 LLLLEL‘TUN L. 1' EXAMPLE: THIS IS AN IREPE30 WITH ASSEMBLY Q ,7 PART NUMBER LOT CODE 5657 INTERNATIONAL ASSEMBLED ON w 35 2001 RECT'F'ER ‘(F‘FPEBO I IN THE ASSEMBLY LINE “H“ LOGO 515"“ ‘ng ‘ DATE CODE . . . . ASSEMBLY « YEAR 1 : 2001 Note: “P“ In assembly In; posmon indicates ILead’FreeI LOT CODE WEEK 35 LINE H Now: For the must currcnl dnming please reform [R website a! \\
IRGP4069DPbF/IRGP4069D-EPbF
10 www.irf.com
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Internationot 19R Rectttter WWW; (Yr/51L m m WWW mu m w, m ma it '3? 33:7 \“L “T” ,1. 71 iii EXAMPLE THtS t8 AN tRGPaOBTZOKDEE WtTH ASSEMBLY O PART NUMBER LOT CODE 5557 tNTERNATtONAL ASSEMBLED ON WW 35 2000 RECTtFtER ,7 , neveua‘mus IL N THE ASSEMBLY LtNE "H" LOGO 2:13 0:“ ‘ ~___ . DATE CODE .T T ASSEMBLY « VEARO T 2000 Note P tn assembtyttne posttton LOT CODE WEEKSS tndtcates "LeadrFree" Lt NE H mm: For the meal current drawing plume refer to IR website at \\ International ISBR Rectifier
IRGP4069DPbF/IRGP4069D-EPbF
www.irf.com 11
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/09
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AD Part Marking Information
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/