Infineon Technologies 的 IKW75N60T 规格书

(ifineon w@@em c_ E Gc
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 1 Rev. 2.8 2013-12-05
Low Loss DuoPack : IGBT in TRENCHSTOPand Fieldstop technology with soft,
fast recovery anti-parallel Emitter Controlled HE diode
Very low VCE(sat) 1.5V (typ.)
Maximum Junction Temperature 175°C
Short circuit withstand time 5s
Positive temperature coefficient in VCE(sat)
very tight parameter distribution
high ruggedness, temperature stable behaviour
very high switching speed
Low EMI
Very soft, fast recovery anti-parallel Emitter Controlled HE diode
Qualified according to JEDEC1) for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Applications:
Frequency Converters
Uninterrupted Power Supply
Type VCE ICVCE(sat),Tj=25°C Tj,max Marking Package
IKW75N60T 600V 75A 1.5V 175CK75T60 PG-TO247-3
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage, Tj ≥ 25CVC E 600 V
DC collector current, limited by Tjmax
TC= 25CIC
802)
75
A
TC= 100C
Pulsed collector current, tplimited by Tjmax IC p ul s 225
Turn off safe operating area VCE = 600V, Tj= 175C, tp= 1µs -225
Diode forward current, limited by Tjmax
TC= 25CIF
802)
75
TC= 100C
Diode pulsed current, tplimited by Tjmax IF p u l s 225
Gate-emitter voltage VG E 20 V
Short circuit withstand time3)
VGE = 15V, VCC 400V, Tj150CtS C 5s
Power dissipation TC= 25CPt o t 428 W
Operating junction temperature Tj-40...+175
C
Storage temperature Ts t g -55...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s Ts o l d 260
1) J-STD-020 and JESD-022
2) Value limited by bondwire
3) Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO247-3
(ifineon
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 2 Rev. 2.8 2013-12-05
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
Rt h J C 0.35 K/W
Diode thermal resistance,
junction – case
Rt h J C D 0.6
Thermal resistance,
junction – ambient
Rt h J A 40
Electrical Characteristic, at Tj= 25 C, unless otherwise specified
Parameter Symbol Conditions Value Unit
min. Typ. max.
Static Characteristic
Collector-emitter breakdown voltage V( B R ) C ES VG E =0V, IC=0.2mA 600 - - V
Collector-emitter saturation voltage VC E ( s at ) VG E = 15V, IC=75A
Tj=25C
Tj=175C
-
-
1.5
1.9
2.0
-
Diode forward voltage VFVG E =0V, IF=75A
Tj=25C
Tj=175C
-
-
1.65
1.6
2.0
-
Gate-emitter threshold voltage VG E ( t h) IC=1.2mA,VC E =VG E 4.1 4.9 5.7
Zero gate voltage collector current IC E S VC E =600V,
VG E =0V
Tj=25C
Tj=175C
-
-
-
-
40
5000
µA
Gate-emitter leakage current IG E S VC E =0V,VG E =20V - - 100 nA
Transconductance gfs VC E =20V, IC=75A - 41 - S
Integrated gate resistor RG i n t - Ω
Dynamic Characteristic
Input capacitance Ci s s VC E =25V,
VG E =0V,
f=1MHz
-4620 - pF
Output capacitance Co s s -288 -
Reverse transfer capacitance Cr s s -137 -
Gate charge QG a t e VC C =480V, IC=75A
VG E =15V
- 470 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE- 13 - nH
Short circuit collector current
Allowed number of short circuits: <1000; time
between short circuits: >1s.
IC ( S C ) VG E =15V,tSC 5s
VC C = 400V,
Tj150C
- 690 - A
(ifineon
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 3 Rev. 2.8 2013-12-05
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td ( o n ) Tj=25C,
VCC=400V,IC=75A,
VG E =0/15V,
rG=5,L
=100nH,
C
=39pF
L
,C
from Fig. E
Energy losses include
“tail” and diode reverse
recovery.
- 33 - ns
Rise time tr- 36 -
Turn-off delay time td ( o f f ) - 330 -
Fall time tf- 35 -
Turn-on energy Eo n - 2.0 - mJ
Turn-off energy Eo f f - 2.5 -
Total switching energy Et s - 4.5 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=25C,
VR=400V, IF=75A,
diF/dt=1460A/s
- 121 - ns
Diode reverse recovery charge Qrr - 2.4 - µC
Diode peak reverse recovery current Ir r m - 38.5 - A
Diode peak rate of fall of reverse
recovery current during tb
dir r /dt - 921 - A/s
Switching Characteristic, Inductive Load, at Tj=175 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td ( o n ) Tj=175C,
VCC=400V,IC=75A,
VG E =0/15V,
rG=5,L
=100nH,
C
=39pF
L
,C
from Fig. E
Energy losses include
“tail” and diode reverse
recovery.
- 32 - ns
Rise time tr- 37 -
Turn-off delay time td ( o f f ) - 363 -
Fall time tf- 38 -
Turn-on energy Eo n - 2.9 - mJ
Turn-off energy Eo f f - 2.9 -
Total switching energy Et s - 5.8 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=175C
VR=400V, IF=75A,
diF/dt=1460A/s
- 182 - ns
Diode reverse recovery charge Qrr - 5.8 - µC
Diode peak reverse recovery current Ir r m - 56.2 - A
Diode peak rate of fall of reverse
recovery current during tb
dir r /dt - 1013 - A/s
infineon 1,. __ ~ I " 100A 1“ .— " -~‘ ‘\ mm ‘ \ 10A HHH ‘ M ’ c } = ‘\ 1A hv 10v 100v moov 1 2
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 4 Rev. 2.8 2013-12-05
IC,COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
50A
100A
150A
200A
TC=110°C
TC=80°C
IC,COLLECTOR CURRENT
f,SWITCHING FREQUENCY VCE,COLLECTOR-EMITTER VOLTAGE
Figure
1
.
Collector current as a function of
switching frequency
(Tj175C, D = 0.5, VCE = 400V,
VGE = 0/15V, rG= 5)
Figure
2
.
Safe operating area
(D = 0, TC= 25C, Tj175C;
VGE=0/15V)
Ptot,POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
50W
100W
150W
200W
250W
300W
350W
400W
IC,COLLECTOR CURRENT
25°C 75°C 125°C
0A
30A
60A
90A
120A
TC,CASE TEMPERATURE TC,CASE TEMPERATURE
Figure
3
.
Power dissipation as a function of
case temperature
(Tj175C)
Figure
4
.
Collector current as a function
of case temperature
(VGE 15V, Tj175C)
I
c
I
c
(ifineon \ //// / \\ \\\ / //
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 5 Rev. 2.8 2013-12-05
IC,COLLECTOR CURRENT
0V 1V 2V 3V
0A
30A
60A
90A
120A
15V
7V
9V
11V
13V
VGE=20V
IC,COLLECTOR CURRENT
0V 1V 2V 3V
0A
30A
60A
90A
120A
15V
7V
9V
11V
13V
VGE=20V
VCE,COLLECTOR-EMITTER VOLTAGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure
5
.
Typical output characterist
ic
(Tj= 25°C)
Figure
6
.
Typical output characteristic
(Tj= 175°C)
IC,COLLECTOR CURRENT
0V 2V 4V 6V 8V
0A
20A
40A
60A
80A
25°C
TJ=175°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
2.5V
IC=75A
IC=150A
IC=37.5A
VGE,GATE-EMITTER VOLTAGE TJ,JUNCTION TEMPERATURE
Figure
7
.
Typical transfer characteristic
(VCE=20V)
Figure
8
.
Typical collector
-
emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
(ifineon
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 6 Rev. 2.8 2013-12-05
t, SWITCHING TIMES
0A 40A 80A 120A
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
 
10ns
100ns
tr
td(on)
tf
td(off)
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure
9
.
Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, rG= 5Ω,
Dynamic test circuit in Figure E)
Figure
10
.
Typical switching times as a
function of gate resistor
(inductive load, TJ= 175°C,
VCE= 400V, VGE = 0/15V, IC= 75A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
25°C 50°C 75°C 100°C 125°C 150°C
100ns
tr
td(on)
tf
td(off)
VGE(th),GATE-EMITT TRSHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
7V
min.
typ.
max.
TJ,JUNCTION TEMPERATURE TJ,JUNCTION TEMPERATURE
Figure
11
.
Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC= 75A, rG=5Ω,
Dynamic test circuit in Figure E)
Figure
12
.
Gate
-
emitter threshold voltage as
a function of junction temperature
(IC= 1.2mA)
(ifineon \\ \ \\ + \\ \\
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 7 Rev. 2.8 2013-12-05
E,SWITCHING ENERGY LOSSES
0A 20A 40A 60A 80A 100A 120A 140A
0.0mJ
4.0mJ
8.0mJ
12.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
E,SWITCHING ENERGY LOSSES
   
0.0mJ
2.0mJ
4.0mJ
6.0mJ
8.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure
13
.
Typical switching energy losses
as a function of collector current
(inductive load, TJ= 175°C,
VCE = 400V, VGE = 0/15V, rG= 5Ω,
Dynamic test circuit in Figure E)
Figure
14
. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ= 175°C,
VCE = 400V, VGE = 0/15V, IC= 75A,
Dynamic test circuit in Figure E)
E,SWITCHING ENERGY LOSSES
25°C 50°C 75°C 100°C 125°C 150°C
0.0mJ
1.0mJ
2.0mJ
3.0mJ
4.0mJ
5.0mJ Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
E,SWITCHING ENERGY LOSSES
300V 350V 400V 450V 500V 550V
0mJ
2mJ
4mJ
6mJ
8mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
TJ,JUNCTION TEMPERATURE VCE,COLLECTOR-EMITTER VOLTAGE
Figure
15
.
Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC= 75A, rG= 5Ω,
Dynamic test circuit in Figure E)
Figure
16
.
Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ= 175°C,
VGE = 0/15V, IC= 75A, rG= 5Ω,
Dynamic test circuit in Figure E)
(ifineon \\-
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 8 Rev. 2.8 2013-12-05
VGE,GATE-EMITTER VOLTAGE
0nC 100nC 200nC 300nC 400nC
0V
5V
10V
15V
480V
120V
c, CAPACITANCE
0V 10V 20V
100pF
1nF
Crss
Coss
Ciss
QGE,GATE CHARGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure
17
.
Typical gate charge
(IC=75 A)
Figure
18
.
Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f= 1 MHz)
I
C(sc)
, short circuit COLLECTOR CURRENT
0
250
500
750
1000
12 13 14 15 16 17 18 19 20
tSC,SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V
0µs
2µs
4µs
6µs
8µs
10µs
12µs
VGE,GATE-EMITTER VOLTAGE VGE,GATE-EMITTER VOLTAGE
Figure
19
.
Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 400V, Tj150C)
Figure
20
.
Short circuit withstand time as a
function of gate-emitter voltage
(VCE=400V,start at TJ=25°C,
TJmax<150°C)
infineon u 0290 (1000119 _ 0.000003 cyzn/fiY C Cy=n/Hv C 1p5 10p5 IOOHS 1m: 10m: 100m: IOOHS 1H5 TOHSIOOHS TmS IOmSTOOmS
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 9 Rev. 2.8 2013-12-05
ZthJC,TRANSIENT THERMAL IMPEDANCE
1µs
10µs
100µs
1ms
10ms
100ms
10-3K/W
10-2K/W
10-1K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
ZthJC,TRANSIENT THERMAL IMPEDANCE
100ns
1µs
10µs
100µs
1ms
10ms
100ms
10
-2K/W
10
-1K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP,PULSE WIDTH tP,PULSE WIDTH
Figure
21
.
IGBT transient thermal
impedance
(D = tp/T)
Figure
22
.
Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
trr,REVERSE RECOVERY TIME
1000As 1500As
0ns
50ns
100ns
150ns
200ns
TJ=25°C
TJ=17C
Qrr,REVERSE RECOVERY CHARGE
1000A/µs 1500A/µs
0µC
1µC
2µC
3µC
4µC
5µC
TJ=25°C
TJ=175°C
diF/dt,DIODE CURRENT SLOPE diF/dt,DIODE CURRENT SLOPE
Figure
23
.
Typical reverse recovery time as
a function of diode current slope
(VR=400V, IF=75A,
Dynamic test circuit in Figure E)
Figure
24
.
Typical reverse recovery charge
as a function of diode current
slope
(VR= 400V, IF=75A,
Dynamic test circuit in Figure E)
R, ( K / W )
,( s )
0.1968 0.115504
0.0733 0.009340
0.0509 0.000823
0.0290
0.000119
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
R, ( K / W )
,( s )
0.1846 0.110373
0.1681 0.015543
0.1261 0.001239
0.0818 0.000120
0.04
0.000008
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
(ifineon OF REVERSE RECOVERY CURRENT
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 10 Rev. 2.8 2013-12-05
Irr,REVERSE RECOVERY CURRENT
1000A/µs 1500A/µs
0A
10A
20A
30A
40A
50A
60A
TJ=25°C
TJ=175°C
di
rr
/dt
,
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY
CURRENT
1000As 1500A/µs
0A/µs
-200A/µs
-400A/µs
-600A/µs
-800A/µs
-1000A/µs
-1200A/µs
TJ=25°C
TJ=175°C
diF/dt,DIODE CURRENT SLOPE diF/dt,DIODE CURRENT SLOPE
Figure
25
.
Typical reverse recovery current
as a function of diode current
slope
(VR= 400V, IF= 75A,
Dynamic test circuit in Figure E)
Figure
26
.
Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=400V, IF=75A,
Dynamic test circuit in Figure E)
IF,FORWARD CURRENT
0V 1V 2V
0A
50A
100A
150A
200A
175°C
TJ=25°C
VF,FORWARD VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
75A
IF=150A
37.5A
VF,FORWARD VOLTAGE TJ,JUNCTION TEMPERATURE
Figure
27
.
Typical diode forward current as
a function of forward voltage
Figure
28
.
Typical diode forward voltage
as a
function of junction temperature
infineon PG-T0247-3 l—4 A2 IllullEI'Eu pelts MN MAX MN MAX A 4.33 5.21 man m5 .1 7.77 7.9 am Mon wcwamuo. u us 2... nm was 1mm x. 1.07 v.3: am 0952 n «.99 m am am mu ° bk I30 7.1a DJI75 0965 u 7.57 3.39 mu m: u 2.51 m um am 0 5 5 g m m um um LA I n ma 7|.u1 um aw '75,,“ D1 I625 "#5 WM) “£65 n: us has mm mm mm" ,mm s Ian 15.13 am ms 51 13.": mg m 0.157 :2 150 mu mus 0.231 G B 1.00 L430 01293 0.“)? . a,“ (use) 0.214 (use) " ’ 3 mu: an: L 19.31! 70.17 mm Mon MW“, n ma «7 mm am I“ 3.5“ 3.70 null! 0.146 RWIIIDH a 5n um mm 0.236 0° 5 5,04 m was om
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 11 Rev. 2.8 2013-12-05
infineon “at w m: v“ 90: v5: / my.) 9; Giana fl \ 9st 4 Vs: 10: «GE 50 H ., - - our I Dmde ‘ \4 1 1 1.; Figure E. Dynamic test circuit Parasitic Inductance L”, Parasmic capacitor C,, Relief capacitor C, 55 (only for ZVT SWItchIng) ; z Vuxlcxw
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 12 Rev. 2.8 2013-12-05
I
r
r
m
90%
Ir r m
10%
Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
1
2
n
T
(
t
)
j
1
1
2
2
n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent
circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
(imeon
IKW75N60T
TRENCHSTOPSeries q
IFAG IPC TD VLS 13 Rev. 2.8 2013-12-05
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.