Vishay Semiconductor Opto Division 的 VO3150A 规格书

— VISHAY. V Q ® ‘ \ }‘EE R. !\\\ “EHHSQ fll—II—II—I UCIEIEI DDDDDDDDDDDDDEW
Document Number: 81808 For technical questions, contact: optocoupleranswers@vishay.com www.vishay.com
Rev. 1.1, 14-Jan-10 1
0.5 A Output Current IGBT and MOSFET Driver
VO3150A
Vishay Semiconductors
DESCRIPTION
The VO3150A consists of a LED optically coupled to an
integrated circuit with a power output stage. This
optocoupler is ideally suited for driving power IGBTs and
MOSFETs used in motor control inverter applications. The
high operating voltage range of the output stage provides
the drive voltages required by gate controlled devices. The
voltage and current supplied by this optocoupler makes it
ideally suited for directly driving IGBTs with ratings up to 800
V/20 A. For IGBTs with higher ratings, the VO3150A can be
used to drive a discrete power stage which drives the IGBT
gate.
FEATURES
0.5 A minimum peak output current
25 kV/μs minimum common mode rejection
(CMR) at VCM = 1500 V
•I
CC = 2.5 mA maximum supply current
Under voltage lock-out (UVLO) with
hysteresis
Wide operating VCC range: 15 V to 32 V
0.4 μs maximum propagation delay
Industrial temperature range: - 40 °C to 110 °C
0.5 V maximum low level output voltage (VOL)
Compliant to RoHS directive 2002/95/EC
APPLICATIONS
Isolated IGBT/MOSFET gate driver
AC and brushless DC motor drives
Induction stove top
Industrial inverters
Switch mode power supplies (SMPS)
Uninterruptible power supplies (UPS)
AGENCY APPROVALS
UL - file no. E52744 system code H, double protection
cUL - file no. E52744, equivalent to CSA bulletin 5A
DIN EN 60747-5-5 (VDE0884) available with option 1
1
2
3
4
8
7
6
5
Shield
20530_1
A
C
NC
NC
VO
VO
VCC
VEE
V
DE
19813
ORDERING INFORMATION
VO3150A-X007T
PART NUMBER PACKAGE OPTION TAPE AND
REEL
PACKAGE UL, cUL UL, cUL, VDE
DIP-8 VO3150A -
SMD-8, option 7 VO3150A-X007T VO3150A-X017T
TRUTH TABLE
LED
VCC - VEE
“POSITIVE GOING”
(TURN ON)
VCC - VEE
“NEGATIVE GOING”
(TURN OFF)
VO
Off 0 V to 32 V 0 V to 32 V Low
On 0 V to 11 V 0 V to 9.5 V Low
On 11 V to 13.5 V 9.5 V to 12 V Transition
On 13.5 V to 32 V 12 V to 32 V High
> 0.7 mm
7.62 mm
Option 7
DIP-8
VISHAYm t ogtacoug‘eranswersujwshaywm
www.vishay.com For technical questions, contact: optocoupleranswers@vishay.com Document Number: 81808
2Rev. 1.1, 14-Jan-10
VO3150A
Vishay Semiconductors 0.5 A Output Current IGBT and
MOSFET Driver
Notes
(1) Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.
(2) Maximum pulse width = 10 μs, maximum duty cycle = 0.2 %. This value is intended to allow for component tolerances for designs with
IO peak minimum = 0.5 A. See applications section for additional details on limiting IOH peak.
(3) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through
hole devices (DIP).
ABSOLUTE MAXIMUM RATINGS (1) (Tamb = 25 °C, unless otherwise specified)
PARAMETER TEST CONDITION SYMBOL VALUE UNIT
INPUT
Input forward current IF25 mA
Peak transient input current < 1 μs pulse width, 300 pps IF(TRAN) 1A
Reverse input voltage VR5V
Output power dissipation Pdiss 45 mW
OUTPUT
High peak output current (2) IOH(PEAK) 0.5 A
Low peak output current (2) IOL(PEAK) 0.5 A
Supply voltage (VCC - VEE)0 to + 35 V
Output voltage VO(PEAK) 0 to + VCC V
Output power dissipation Pdiss 250 mW
OPTOCOUPLER
Isolation test voltage
(between emitter and detector, climate
per DIN 500414, part 2, Nov. 74)
t = 1 s VISO 5300 VRMS
Storage temperature range TS- 55 to + 125 °C
Ambient operating temperature range Tamb - 40 to + 110 °C
Total power dissipation Ptot 295 mW
Lead solder temperature (3) for 10 s, 1.6 mm below seating plane Tsld 260 °C
RECOMMENDED OPERATING CONDITION
PARAMETER SYMBOL MIN. MAX. UNIT
Power supply voltage VCC - VEE 15 32 V
Input LED current (on) IF716mA
Input voltage (off) VF(OFF) - 3 0.8 V
Operating temperature Tamb - 40 + 110 °C
— VISHAYJ V ogtocaug‘eranswevsmwsnaysom
Document Number: 81808 For technical questions, contact: optocoupleranswers@vishay.com www.vishay.com
Rev. 1.1, 14-Jan-10 3
VO3150A
0.5 A Output Current IGBT and
MOSFET Driver Vishay Semiconductors
Note
The thermal model is represented in the thermal network below. Each resistance value given in this model can be used to calculate the
temperatures at each node for a given operating condition. The thermal resistance from board to ambient will be dependent on the type of
PCB, layout and thickness of copper traces. For a detailed explanation of the thermal model, please reference Vishay's Thermal
Characteristics of Optocouplers application note.
Notes
(1) Minimum and maximum values were tested over recommended operating conditions (Tamb = - 40 °C to 110 °C, IF(ON) = 7 mA to 16 mA,
VF(OFF) = - 3 V to 0.8 V, VCC = 15 V to 32 V, VEE = ground) unless otherwise specified. Typical values are characteristics of the device and are
the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements. All typical values
were measured at Tamb = 25 °C and with VCC - VEE = 32 V.
(2) Maximum pulse width = 50 μs, maximum duty cycle = 0.5 %.
(3) Maximum pulse width = 10 μs, maximum duty cycle = 0.2 %. This value is intended to allow for component tolerances for designs with
IO peak minimum = 0.5 A.
(4) In this test VOH is measured with a dc load current. When driving capacitive loads VOH will approach VCC as IOH approaches zero A. Maximum
pulse width = 1 ms, maximum duty cycle = 20 %.
THERMAL CHARACTERISTICS
PARAMETER SYMBOL VALUE UNIT
LED power dissipation Pdiss 45 mW
Output power dissipation Pdiss 250 mW
Total power dissipation Ptot 285 mW
Maximum LED junction temperature Tjmax. 125 °C
Maximum output die junction temperature Tjmax. 125 °C
Thermal resistance, junction emitter to board θJEB 169 °C/W
Thermal resistance, junction emitter to case θJEC 192 °C/W
Thermal resistance, junction detector to board θJDB 82 °C/W
Thermal resistance, junction detector to case θJDC 80 °C/W
Thermal resistance, junction emitter to
junction detector θJED 200 °C/W
Thermal resistance, case to ambient θCA 2645 °C/W
ELECTRICAL CHARACTERISTICS (1)
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
High level output current IF = 16 mA, Rg = 10 Ω, Cg = 20 nF,
VCC = 15 V, VEE = 0 V IOH (3) 0.5 A
Low level output current IF = 0 mA, Rg = 10 Ω, Cg = 20 nF,
VCC = 15 V, VEE = 0 V IOL (3) 0.5 A
High level output voltage IO = - 100 mA VOH (4) VCC - 4 VCC - 2.1 V
Low level output voltage IO = 100 mA VOL 0.2 0.5 V
High level supply current Output open, IF = 7 mA to 16 mA ICCH 2.5 mA
Low level supply current Output open, VF = - 3 V to + 0.8 V ICCL 2.5 mA
Threshold input current low to high IO = 0 mA, VO > 5 V IFLH 2.1 5 mA
Threshold input voltage high to low VFHL 0.8 V
Input forward voltage IF = 10 mA VF11.31.6V
Temperature coefficient of forward
voltage IF = 10 mA ΔVF/ΔTA- 1.4 mV/°C
Input reverse breakdown voltage IR = 10 μA BVΡ5V
Input capacitance f = 1 MHz, VF = 0 V CIN 60 pF
UVLO threshold VO 5 V VUVLO+ 11 12.6 13.5 V
IF = 10 mA VUVLO- 9.5 10.7 12 V
UVLO hysteresis UVLOHYS 1.9 V
T
A
θ
CA
T
C
T
JD
T
JE
T
B
θ
EC
θ
EB
θ
DC
θ
DB
θ
BA
θ
DE
T
A
19996
Package
fl [3 LJ >—4 LJ LJ flflflfl LJ LJ LJ HEW % Fug? Dflflfl LHJ ~// VISHAYm LJ }_‘ Hi L H
www.vishay.com For technical questions, contact: optocoupleranswers@vishay.com Document Number: 81808
4Rev. 1.1, 14-Jan-10
VO3150A
Vishay Semiconductors 0.5 A Output Current IGBT and
MOSFET Driver
TEST CIRCUITS
Fig. 1 - IOH Test Circuit
Fig. 2 - IOL Test Circuit
Fig. 3 - VOH Test Circuit
Fig. 4 - VOL Test Circuit
Fig. 5 - IFLH Test Circuit
Fig. 6 - UVLO Test Circuit
20973_1
1
2
3
4
8
7
6
5
IF = 7 mA to
16 mA V = 15 V
to 32 V
CC
IOH
4 V
0.1 µF
+
+
20975_1
1
2
3
4
8
7
6
5
VCC = 15 V
to 32 V
I
OL
0.1 µF
2.5 V
+
+
20977_1
1
2
3
4
8
7
6
5
VOH
0.1 µF
100 mA
VCC = 15 V
to 32 V
IF = 7 mA
to 16 mA +
20974_1
0.1 µF
100 mA
VCC = 15 V
to 32 V
1
2
3
8
7
6
5
4
VOL
+
20976_1
I
F
0.1 µF
VCC = 15 V
to 32 V
VO > 5 V
1
2
3
4
8
7
6
5
+
20978
1
2
3
4
8
7
6
5
VO > 5 V
0.1 µF
VCC
IF = 10 mA +
SWITCHING CHARACTERISTICS
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
Propagation delay time to logic
low output (1)
Rg = 47 Ω, Cg = 3 nF, f = 10 kHz,
duty cycle = 50 % tPHL 0.1 0.4 μs
Propagation delay time to logic
high output (1)
Rg = 47 Ω, Cg = 3 nF, f = 10 kHz,
duty cycle = 50 % tPLH 0.1 0.4 μs
Pulse width distortion (2) Rg = 47 Ω, Cg = 3 nF, f = 10 kHz,
duty cycle = 50 % PWD 0.2 μs
Propagation delay difference
between any two parts (3)
Rg = 47 Ω, Cg = 3 nF, f = 10 kHz,
duty cycle = 50 % PDD (tPHL - tPLH) - 0.35 0.35 μs
Rise time Rg = 47 Ω, Cg = 3 nF, f = 10 kHz,
duty cycle = 50 % tr0.1 μs
Fall time Rg = 47 Ω, Cg = 3 nF, f = 10 kHz,
duty cycle = 50 % tf0.1 μs
— V VI SHAW
Document Number: 81808 For technical questions, contact: optocoupleranswers@vishay.com www.vishay.com
Rev. 1.1, 14-Jan-10 5
VO3150A
0.5 A Output Current IGBT and
MOSFET Driver Vishay Semiconductors
Notes
(1) This load condition approximates the gate load of a 1200 V/25 A IGBT.
(2) Pulse width distortion (PWD) is defined as |tPHL - tPLH| for any given device.
(3) The difference between tPHL and tPLH between any two VO3150A parts under the same test condition.
Fig. 7 - tPLH, tPHL, tr and tf Test Circuit and Waveforms
Notes
(1) Pins 1 and 4 need to be connected to LED common.
(2) Common mode transient immunity in the high state is the maximum tolerable |dVCM/dt| of the common mode pulse, VCM, to assure that the
output will remain in the high state (i.e., VO > 15 V).
(3) Common mode transient immunity in a low state is the maximum tolerable |dVCM/dt| of the common mode pulse, VCM, to assure that the
output will remain in a low state (i.e., VO < 1 V).
Fig. 8 - CMR Test Circuit and Waveforms
UVLO turn on delay VO > 5 V, IF = 10 mA TUVLO-ON 0.8 μs
UVLO turn off delay VO > 5 V, IF = 10 mA TUVLO-OFF 0.6 μs
COMMON MODE TRANSIENT IMMUNITY
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
Common mode transient immunity
at logic high output (1)(2)
TA = 25 °C, IF = 10 mA to 16 mA,
VCM = 1500 V, VCC = 32 V |CMH|25 35 kV/μs
Common mode transient immunity
at logic low output (1)(3)
TA = 25 °C, VCM = 1500 V,
VCC = 32 V, VF = 0 V |CML|25 35 kV/μs
SWITCHING CHARACTERISTICS
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
20979_1
1
3
2
4 5
7
6
8
0.1 µF
I = 7 mA to 16 mA
F
V = 15 V
to 32 V
CC
47 Ω
500 Ω
10 kHz
50 % duty
cycle
I
F
t
r
t
PLH t
PHL
OUT
90 %
50 %
10 %
t
f
V
O
3 nF
+
+
20980-1
1
3
2
45
7
6
8
5 V
0 V
0.1 µF
A
V
O
V
O
V = 1500 V
CM
V = 32 V
CC V
OH
V
OL
V
O
Switch at A: IF = 10 mA
Switch at B: IF = 0 mA
dV
dt
Dt
Dt
V
CM
+
+
+
IF
=
R
VISHAYm ‘ oglacougleranswers@wshay.cam
www.vishay.com For technical questions, contact: optocoupleranswers@vishay.com Document Number: 81808
6Rev. 1.1, 14-Jan-10
VO3150A
Vishay Semiconductors 0.5 A Output Current IGBT and
MOSFET Driver
Note
As per IEC 60747-5-5, §7.4.3.8.1, this optocoupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of prodective circuits.
TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
Fig. 9 - High Output Voltage Drop vs. Temperature
Fig. 10 - High Output Current vs. Temperature
Fig. 11 - Output Low Voltage vs. Temperature
Fig. 12 - Output Low Current vs. Temperature
SAFETY AND INSULATION RATINGS
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
Climatic classification
(according to IEC 68 part 1) 40/110/21
Comparative tracking index CTI 175 399
VIOTM 8000 V
VIORM 890 V
PSO 500 mW
ISI 300 mA
TSI 175 °C
Creepage distance Standard DIP-8 7 mm
Clearance distance Standard DIP-8 7 mm
Creepage distance 400 mil DIP-8 8 mm
Clearance distance 400 mil DIP-8 8 mm
- 3.0
- 2.5
- 2.0
- 1.5
- 1.0
- 0.5
0.0
- 40 - 20 0 20 40 60 80 100 120
Temperature (°C)
VOH - VCC - High Output
Voltage Drop (V)
IF = 16 mA
IOUT = - 100 mA
VCC = 32 V
VEE = 0 V
21705-1
- 40 - 20 0 20 40 60 80 100 120
Temperature (°C)
IOH - High Output Current (A)
21759
0.0
0.5
1.0
1.5
2.0
2.5
IF = 16 mA
Rg = 10 Ω, Cg = 20 nF
VCC = 15 V
VEE = 0 V
0.00
0.05
0.15
0.25
0.10
0.20
0.30
0.35
- 40 - 20 0 20 40 60 80 100 120
Temperature (°C)
V
OL
- Output Low Voltage (V)
VF(OFF) = 0.8 V
IOUT = 100 mA
VCC = 32 V
VEE = 0 V
21707-1
- 40 - 20 0 20 40 60 80 100
Temperature (°C)
IOL - Output Low Current (A)
21760
0.0
0.5
1.0
1.5
2.0
2.5
IF = 0 mA
Rg = 10 Ω, Cg = 20 nF
VCC = 15 V
VEE = 0 V
VISHAYN 7 “C % /« // // / =§§£ \ \ \\\ ogtocoug‘eranswevsfilvlshayxmm
Document Number: 81808 For technical questions, contact: optocoupleranswers@vishay.com www.vishay.com
Rev. 1.1, 14-Jan-10 7
VO3150A
0.5 A Output Current IGBT and
MOSFET Driver Vishay Semiconductors
Fig. 13 - Output Low Voltage vs. Output Low Current
Fig. 14 - Output High Voltage Dropvs. Output High Current
Fig. 15 - Supply Current vs. Temperature
Fig. 16 - Supply Current vs. Supply Voltage
Fig. 17 - Low to High Current Threshold vs. Temperature
Fig. 18 - Transfer Characteristics
IOL - Output Low Current (A)
VOL - Output Low Voltage (V)
21761
0
0.5
1
1.5
2
- 40 °C
25 °C
110 °C
0.0 0.2 0.4 0.6 0.8
IF = 0 mA
VCC = 15 V
VEE = 0 V
I
OH
- Output High Current (A)
(V
OH
- V
CC
) Output High Voltage
Drop (V)
21762
- 40 °C
25 °C
110 °C
- 3
- 2.5
- 2
- 1.5
- 1
0 0.2 0.4 0.6 0.8
IF = 16 mA
VCC = 15 V
VEE = 0 V
0.0
1.0
1.5
2.0
0.5
2.5
Temperature (°C)
ICC - Supply Current (mA)
- 40 - 20 0 20 40 60 80 100 120
ICCH
ICCL
IF = 16 mA for ICCH
IF = 0 mA for ICCL
VCC = 32 V
VEE = 0 V
21710-1
0.0
1.0
1.5
2.0
0.5
2.5
VCC - Supply Voltage (V)
ICC - Supply Current (mA)
15 20 25 30 35
ICCH
ICCL
IF = 10 mA for ICCH
IF = 0 mA for ICCL
TA = 25 °C
VEE = 0 V
21711
0.0
2.0
3.0
4.0
1.0
5.0
1.5
2.5
3.5
0.5
4.5
Temperature (°C)
I
FLH
- Low to High
Current Threshold (mA)
- 40 0 40 80 120- 20 20 60 100
VCC = 32 V
VEE = 0 V
Output = open
21712-1
0
10
15
20
25
30
5
35
012345
I
F
- Forward LED Current (mA)
V
O
- Output Voltage (V)
TA = 25 °C
21752
H c oglocougleranswers©wshay.com
www.vishay.com For technical questions, contact: optocoupleranswers@vishay.com Document Number: 81808
8Rev. 1.1, 14-Jan-10
VO3150A
Vishay Semiconductors 0.5 A Output Current IGBT and
MOSFET Driver
Fig. 19 - Propagation Delay vs. Supply Voltage
Fig. 20 - Propagation Delay vs. Temperature
Fig. 21 - Propagation Delay vs. Forward LED Current
Fig. 22 - Propagation Delay vs. Series Load Resistance
Fig. 23 - Propagation Delay vs. Series Load Capacitance
100
200
300
400
500
VCC - Supply Voltage (V)
tp - Propagation Delay (ns)
15 20 25 30 35
tPLH
tPHL
IF = 10 mA, TA = 25 °C
Rg = 47 Ω, Cg = 3 nF
Duty cycle = 50 %
f = 10 kHz
21736
0
100
200
300
400
500
TA - Temperature (°C)
tp - Propagation Delay (ns)
- 40 - 15 10 6035 85 110
VCC = 32 V, VEE = 0 V
IF = 10 mA
Rg = 47 Ω, Cg = 3 nF
Duty cycle = 50 %
f = 10 kHz
tPLH
tPHL
21737
0
100
200
300
400
500
IF - Forward LED Current (mA)
tp - Propagation Delay (ns)
6 8 10 1412 16
VCC = 30 V, VEE = 0 V
IF = 10 mA, TA = 25 °C
Rg = 47 Ω, Cg = 3 nF
Duty cycle = 50 %
f = 10 kHz
tPHL
tPLH
21738
0
100
200
300
400
500
Rg - Series Load Resistance (Ω)
tp - Propagation Delay (ns)
01020 4030 50
tPHL
tPLH
VCC = 30 V, VEE = 0 V
IF = 10 mA, TA = 25 °C
Cg = 3 nF
Duty cycle = 50 %
f = 10 kHz
21739
0
100
200
300
400
500
Cg - Series Load Capacitance (nF)
tp - Propagation Delay (ns)
02040 8060 100
VCC = 30 V, VEE = 0 V
IF = 10 mA, TA = 25 °C
Rg = 47 Ω
Duty cycle = 50 %
f = 10 kHz
tPHL
tPLH
21740
— VISHAY. HQ
Document Number: 81808 For technical questions, contact: optocoupleranswers@vishay.com www.vishay.com
Rev. 1.1, 14-Jan-10 9
VO3150A
0.5 A Output Current IGBT and
MOSFET Driver Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters
PACKAGE MARKING
Note
VDE logo is only marked on option 1 parts. Option information is not marked on the part.
i178006
Pin one ID
6.48
6.81
9.63
9.91
0.76
1.14
4° typ.
2.54 typ.
10°
3° to 9°
7.62 typ.
0.46
0.56 0.2
0.3
2.79
3.30
3.30
3.81
0.51
0.89
5.84
6.35
4321
0.79
1.27
567 8 ISO method A
7.62 typ.
0.7
Option 7
18450-4
4.6
4.1
8 min.
8.4 min.
10.3 max.
21764-43
VO3150A
V YWW H 68
— VISHAY. V
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 01-Jan-2021 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED