Texas Instruments 的 TVP5146 ~ 规格书

{5’ TEXAS INSTRUMENTS

     !
"#$ $% &'() *$+,#% $
-' . $ ( ,++
November 2004 HPA Digital Audio Video
Data Manua
l
SLES084A
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is
an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303, Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated
iii
Contents
Section Title Page
1 Introduction 1−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Detailed Functionality 1−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Applications 1−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Related Products 1−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Ordering Information 1−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Functional Block Diagram 1−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Terminal Assignments 1−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Terminal Functions 1−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Functional Description 2−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Analog Processing and A/D Converters 2−1. . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Video Input Switch Control 2−1. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Analog Input Clamping 2−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 Automatic Gain Control 2−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4 A/D Converters 2−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Digital Video Processing 2−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 2 Decimation Filter 2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Composite Processor 2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Luminance Processing 2−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4 Component Video Processor 2−8. . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5 Color Space Conversion 2−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Clock Circuits 2−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Real-Time Control (RTC) 2−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Output Formatter 2−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Fast Switches for SCART 2−11. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2 Separate Syncs 2−11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3 Embedded Syncs 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 I2C Host Interface 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Reset and I2C Bus Address Selection 2−17. . . . . . . . . . . . . . . . .
2.6.2 I2C Operation 2−17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.3 VBUS Access 2−17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.4 I2C Timing Requirements 2−19. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 VBI Data Processor 2−19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.1 VBI FIFO and Ancillary Data in Video Stream 2−20. . . . . . . . . . .
2.7.2 VBI Raw Data Output 2−21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Reset and Initialization 2−21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9 Adjusting External Syncs 2−22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.10 Internal Control Registers 2−22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
2.11 Register Definitions 2−27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.1 Input Select Register 2−27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.2 AFE Gain Control Register 2−28. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.3 Video Standard Register 2−28. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.4 Operation Mode Register 2−29. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.5 Autoswitch Mask Register 2−29. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.6 Color Killer Register 2−30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.7 Luminance Processing Control 1 Register 2−30. . . . . . . . . . . . . .
2.11.8 Luminance Processing Control 2 Register 2−31. . . . . . . . . . . . . .
2.11.9 Luminance Processing Control 3 Register 2−31. . . . . . . . . . . . . .
2.11.10 Luminance Brightness Register 2−31. . . . . . . . . . . . . . . . . . . . . . .
2.11.11 Luminance Contrast Register 2−32. . . . . . . . . . . . . . . . . . . . . . . . .
2.11.12 Chrominance Saturation Register 2−32. . . . . . . . . . . . . . . . . . . . .
2.11.13 Chroma Hue Register 2−32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.14 Chrominance Processing Control 1 Register 2−33. . . . . . . . . . .
2.11.15 Chrominance Processing Control 2 Register 2−33. . . . . . . . . . .
2.11.16 Component Pr Saturation Register 2−33. . . . . . . . . . . . . . . . . . . .
2.11.17 Component Y Contrast Register 2−34. . . . . . . . . . . . . . . . . . . . . .
2.11.18 Component Pb Saturation Register 2−34. . . . . . . . . . . . . . . . . . .
2.11.19 Component Y Brightness Register 2−34. . . . . . . . . . . . . . . . . . . .
2.11.20 AVID Start Pixel Register 2−35. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.21 AVID Stop Pixel Register 2−35. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.22 HSYNC Start Pixel Register 2−35. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.23 HSYNC Stop Pixel Register 2−36. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.24 VSYNC Start Line Register 2−36. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.25 VSYNC Stop Line Register 2−36. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.26 VBLK Start Line Register 2−36. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.27 VBLK Stop Line Register 2−37. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.28 Fast-Switch Control Register 2−37. . . . . . . . . . . . . . . . . . . . . . . . .
2.11.29 Fast-Switch SCART Delay Register 2−37. . . . . . . . . . . . . . . . . . .
2.11.30 SCART Delay Register 2−38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.31 CTI Delay Register 2−38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.32 CTI Control Register 2−38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.33 RTC Register 2−39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.34 Sync Control Register 2−39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.35 Output Formatter 1 Register 2−40. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.36 Output Formatter 2 Register 2−40. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.37 Output Formatter 3 Register 2−41. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.38 Output Formatter 4 Register 2−42. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.39 Output Formatter 5 Register 2−43. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.40 Output Formatter 6 Register 2−44. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.41 Clear Lost Lock Detect Register 2−44. . . . . . . . . . . . . . . . . . . . . .
2.11.42 Status 1 Register 2−45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.43 Status 2 Register 2−46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
2.11.44 AGC Gain Status Register 2−46. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.45 Video Standard Status Register 2−47. . . . . . . . . . . . . . . . . . . . . .
2.11.46 GPIO Input 1 Register 2−47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.47 GPIO Input 2 Register 2−48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.48 Vertical Line Count Register 2−48. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.49 AFE Coarse Gain for CH 1 Register 2−49. . . . . . . . . . . . . . . . . . .
2.11.50 AFE Coarse Gain for CH 2 Register 2−49. . . . . . . . . . . . . . . . . . .
2.11.51 AFE Coarse Gain for CH 3 Register 2−50. . . . . . . . . . . . . . . . . . .
2.11.52 AFE Coarse Gain for CH 4 Register 2−50. . . . . . . . . . . . . . . . . . .
2.11.53 AFE Fine Gain for Pb_B Register 2−51. . . . . . . . . . . . . . . . . . . . .
2.11.54 AFE Fine Gain for Y_G_Chroma Register 2−51. . . . . . . . . . . . . .
2.11.55 AFE Fine Gain for R_Pr Register 2−52. . . . . . . . . . . . . . . . . . . . .
2.11.56 AFE Fine Gain for CVBS_Luma Register 2−52. . . . . . . . . . . . . .
2.11.57 ROM Version Register 2−52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.58 AGC White Peak Processing Register 2−53. . . . . . . . . . . . . . . . .
2.11.59 AGC Increment Speed Register 2−54. . . . . . . . . . . . . . . . . . . . . .
2.11.60 AGC Increment Delay Register 2−54. . . . . . . . . . . . . . . . . . . . . . .
2.11.61 Chip ID MSB Register 2−54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.62 Chip ID LSB Register 2−54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.63 VDP TTX Filter And Mask Registers 2−55. . . . . . . . . . . . . . . . . . .
2.11.64 VDP TTX Filter Control Register 2−56. . . . . . . . . . . . . . . . . . . . . .
2.11.65 VDP FIFO Word Count Register 2−57. . . . . . . . . . . . . . . . . . . . . .
2.11.66 VDP FIFO Interrupt Threshold Register 2−58. . . . . . . . . . . . . . . .
2.11.67 VDP FIFO Reset Register 2−58. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.68 VDP FIFO Output Control Register 2−58. . . . . . . . . . . . . . . . . . . .
2.11.69 VDP Line Number Interrupt Register 2−58. . . . . . . . . . . . . . . . . .
2.11.70 VDP Pixel Alignment Register 2−59. . . . . . . . . . . . . . . . . . . . . . . .
2.11.71 VDP Line Start Register 2−59. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.72 VDP Line Stop Register 2−59. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.73 VDP Global Line Mode Register 2−59. . . . . . . . . . . . . . . . . . . . . .
2.11.74 VDP Full Field Enable Register 2−60. . . . . . . . . . . . . . . . . . . . . . .
2.11.75 VDP Full Field Mode Register 2−60. . . . . . . . . . . . . . . . . . . . . . . .
2.11.76 VBUS Data Access With No VBUS Address Increment
Register 2−60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.77 VBUS Data Access With VBUS Address Increment
Register 2−60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.78 FIFO Read Data Register 2−61. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.79 VBUS Address Access Register 2−61. . . . . . . . . . . . . . . . . . . . . .
2.11.80 Interrupt Raw Status 0 Register 2−62. . . . . . . . . . . . . . . . . . . . . . .
2.11.81 Interrupt Raw Status 1 Register 2−63. . . . . . . . . . . . . . . . . . . . . . .
2.11.82 Interrupt Status 0 Register 2−64. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.83 Interrupt Status 1 Register 2−65. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.84 Interrupt Mask 0 Register 2−66. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.85 Interrupt Mask 1 Register 2−67. . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
2.11.86 Interrupt Clear 0 Register 2−68. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.87 Interrupt Clear 1 Register 2−69. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12 VBUS Register Definitions 2−70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.1 VDP Closed Caption Data Register 2−70. . . . . . . . . . . . . . . . . . .
2.12.2 VDP WSS Data Register 2−70. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.3 VDP VITC Data Register 2−71. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.4 VDP V-Chip TV Rating Block 1 Register 2−71. . . . . . . . . . . . . . .
2.12.5 VDP V-Chip TV Rating Block 2 Register 2−71. . . . . . . . . . . . . . .
2.12.6 VDP V-Chip TV Rating Block 3 Register 2−72. . . . . . . . . . . . . . .
2.12.7 VDP V-Chip MPAA Rating Data Register 2−72. . . . . . . . . . . . . . .
2.12.8 VDP General Line Mode and Line Address Register 2−73. . . . .
2.12.9 VDP VPS/Gemstar Data Register 2−74. . . . . . . . . . . . . . . . . . . . .
2.12.10 VDP FIFO Read Register 2−74. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.11 Interrupt Configuration Register 2−75. . . . . . . . . . . . . . . . . . . . . . .
3 Electrical Specifications 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Recommended Operating Conditions 3−1. . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Crystal Specifications 3−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Electrical Characteristics 3−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 DC Electrical Characteristics 3−2. . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 Analog Processing and A/D Converters 3−2. . . . . . . . . . . . . . . .
3.3.3 Timing 3−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Example Register Settings 4−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Example 1 4−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Assumptions 4−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Recommended Settings 4−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Example 2 4−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Assumptions 4−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Recommended Settings 4−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Example 3 4−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Assumptions 4−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Recommended Settings 4−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Application Information 5−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Application Example 5−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Designing With PowerPAD 5−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Mechanical Data 6−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vii
List of Illustrations
Figure Title Page
1−1 Functional Block Diagram 1−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1−2 Terminal Assignments Diagram 1−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−1 Analog Processors and A/D Converters 2−1. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−2 Digital Video Processor Block Diagram 2−3. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−3 Composite and S-Video Processor Block Diagram 2−4. . . . . . . . . . . . . . . . . .
2−4 Color Low-Pass Filter Frequency Response 2−5. . . . . . . . . . . . . . . . . . . . . . . .
2−5 Color Low-Pass Filter With Filter Frequency Response, NTSC Square
Pixel Sampling 2−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−6 Color Low-Pass Filter With Filter Characteristics,
NTSC/PAL ITU-R BT.601 Sampling 2−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−7 Color Low-Pass Filter With Filter Characteristics, PAL Square Pixel
Sampling 2−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−8 Chroma Trap Filter Frequency Response, NTSC Square Pixel
Sampling 2−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−9 Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601
Sampling 2−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−10 Chroma Trap Filter Frequency Response, PAL ITU-R BT.601
Sampling 2−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−11 Chroma Trap Filter Frequency Response, PAL Square Pixel
Sampling 2−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−12 Luminance Edge-Enhancer Peaking Block Diagram 2−7. . . . . . . . . . . . . . . . .
2−13 Peaking Filter Response, NTSC Square Pixel Sampling 2−7. . . . . . . . . . . . .
2−14 Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling 2−7. . . . . . . .
2−15 Peaking Filter Response, PAL Square Pixel Sampling 2−8. . . . . . . . . . . . . . .
2−16 Y Component Gain, Offset, Limit 2−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−17 CbCr Component Gain, Offset, Limit 2−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−18 Reference Clock Configurations 2−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−19 RTC Timing 2−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−20 Vertical Synchronization Signals for 525-Line System 2−12. . . . . . . . . . . . . . . .
2−21 Vertical Synchronization Signals for 625-Line System 2−13. . . . . . . . . . . . . . . .
2−22 Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode 2−14. . . . . . . . . . . .
2−23 Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode 2−15. . . . . . . . . . . .
2−24 VSYNC Position With Respect to HSYNC 2−16. . . . . . . . . . . . . . . . . . . . . . . . . .
2−25 VBUS Access 2−18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
2−26 Reset Timing 2−21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−27 Teletext Filter Function 2−57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−1 Clocks, Video Data, and Sync Timing 3−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−2 I2C Host Port Timing 3−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−1 Application Example 5−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
Table Title Page
1−1 Terminal Functions 1−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−1 Output Format 2−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−2 Summary of Line Frequencies, Data Rates, and Pixel/Line Counts 2−11. . . .
2−3 EAV and SAV Sequence 2−16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−4 I2C Host Interface Terminal Description 2−17. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−5 I2C Address Selection 2−17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−6 Supported VBI Systems 2−19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−7 Ancillary Data Format and Sequence 2−20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−8 VBI Raw Data Output Format 2−21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−9 Reset Sequence 2−21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−10 Register Summary 2−23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−11 VBUS Register Summary 2−26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−12 Analog Channel and Video Mode Selection 2−27. . . . . . . . . . . . . . . . . . . . . . . .
1−1
1 Introduction
The TVP5146 device is a high quality, single-chip digital video decoder that digitizes and decodes all popular
baseband analog video formats into digital component video. The TVP5146 decoder supports the analog-to-digital
(A/D) conversion of component RGB and YPbPr signals, as well as the A/D conversion and decoding of NTSC, PAL,
and SECAM composite and S-video into component YCbCr. This decoder includes four 10-bit 30-MSPS A/D
converters (ADCs). Preceding each ADC in the device, the corresponding analog channel contains an analog circuit
that clamps the input to a reference voltage and applies a programmable gain and offset. A total of 10 video input
terminals can be configured to a combination of RGB, YPbPr, CVBS, or S-video video inputs.
Component, composite, or S-video signals are sampled at 2× the square-pixel or ITU-R BT.601 clock frequency,
line-locked, and are then decimated to the 1× pixel rate. CVBS decoding utilizes five-line adaptive comb filtering for
both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap filter is
also available. On CVBS and S-video inputs, the user can control video characteristics such as contrast, brightness,
saturation, and hue via an I2C host port interface. Furthermore, luma peaking (sharpness) with programmable gain
is included, as well as a patented chroma transient improvement (CTI) circuit.
A built-in color space converter is applied to decoded component RGB data.
The following output formats can be selected: 20-bit 4:2:2 YCbCr or 10-bit 4:2:2 YCbCr.
The TVP5146 decoder generates synchronization, blanking, field, active video window, horizontal and vertical syncs,
clock, genlock (for downstream video encoder synchronization), host CPU interrupt and programmable logic I/O
signals, in addition to digital video outputs.
The TVP5146 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI data
processor (VDP) slices, parses, and performs error checking on teletext, closed caption (CC), and other VBI data.
A built-in FIFO stores up to 11 lines of teletext data, and with proper host port synchronization, full-screen teletext
retrieval is possible. The TVP5146 decoder can pass through the output formatter 2× the sampled raw luma data for
host-based VBI processing.
The decoder provides the option for concurrent processing of pixel-locked CVBS and RGB/YPbPr input formats.
The main blocks of the TVP5146 decoder include:
Robust sync detection for weak and noisy signals as well as VCR trick modes
Y/C separation by 2-D, 5-line, adaptive comb or chroma trap filter
Fast-switch input for pixel-by-pixel switching between CVBS and YPbPr/RGB component video inputs
(SCART support)
Four 10-bit, 30-MSPS A/D converters with analog preprocessors [clamp and automatic gain control (AGC)]
Luminance processor
Chrominance processor
Component processor
Clock/timing processor and power-down control
Software-controlled power-saving standby mode
Output formatter
I2C host port interface
VBI data processor
1−2
Macrovision copy protection detection circuit (Type 1, 2, 3, and separate color stripe detection)
3.3-V tolerant digital I/O ports
1.1 Detailed Functionality
Four 30-MSPS, 10-bit A/D channels with programmable gain control
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM (B, D, G, K, K1, L), CVBS, and S-video
Supports analog component SD YPbPr/RGB video formats with embedded sync
10 analog video input terminals for multisource connection
User-programmable video output formats
10-bit ITU-R BT.656 4:2:2 YCbCr with embedded syncs
10-bit 4:2:2 YCbCr with separate syncs
20-bit 4:2:2 YCbCr with separate syncs
−2× sampled raw VBI data in active video during a vertical blanking period
Sliced VBI data during a vertical blanking period or active video period (full field mode)
HSYNC/VSYNC outputs with programmable position, polarity, and width, and FID (field ID) output
Component video processing
Gain (contrast) and offset (brightness) adjustments
Automatic component video detection (525/625)
Color space conversion from RGB to YCbCr
Composite and S-video processing
Adaptive 2-D, 5-line, adaptive comb filter for composite video inputs; chroma trap available
Automatic video standard detection (NTSC/PAL/SECAM) and switching
Luma-peaking with programmable gain
Patented CTI circuit
Patented architecture for locking to weak, noisy, or unstable signals
Single 14.31818-MHz reference crystal for all standards (ITU-R.BT601 and square pixel)
Line-locked internal pixel sampling clock generation with horizontal- and vertical-lock signal outputs
Genlock output [real-time control (RTC] format) for downstream video encoder synchronization
Certified Macrovision copy protection detection
Macrovision is a trademark of Macrovision Corporation.
O
ther trademarks are the property of their respective owners.
1−3
VBI data processor
Teletext (NABTS, WST)
CC and extended data service (EDS)
Wide screen signaling (WSS)
Copy generation management system (CGMS)
Video program system (VPS/PDC)
Vertical interval time code (VITC)
− Gemstar 1×/2× electronic program guide compatible mode
Register readback of CC, WSS (CGMS), VPS/PDC, VITC, and Gemstar 1×/2× sliced data
I2C host port interface
Reduced power consumption: 1.8-V digital core, 3.3-V for digital I/O, and 1.8-V analog core with power-save
and power-down modes
80-terminal TQFP PowerPAD package
1.2 Applications
Digital TV
LCD TV/monitors
DVD-R
PVR
PC video cards
Video capture/video editing
Video conferencing
1.3 Related Products
TVP5150A/TVP5150AM1 Ultralow Power NTSC/PAL/SECAM Video Decoder With Robust Sync Detector,
(SLES098)
1.4 Ordering Information
TA
PACKAGED DEVICES
TA80-TERMINAL PLASTIC FLAT-PACK PowerPADTM
0°C to 70°C TVP5146PFP
Gemstar is a trademark of Gemstar-TV Guide International.
P
owerPAD is a trademark of Texas Instruments.
1−4
1.5 Functional Block Diagram
Composite and S-Video Processor
Y/C
Separation
5-line
Adaptive
Comb
Luma
Processing
Chroma
Processing
ADC1
ADC2
ADC3
ADC4
M
U
XComponent
Processor
CVBS/Y
C
Y/G
Pb/B
Pr/R Gain/Offset
Color
Space
Conversion
C
Y
Output
Formatter
Y[9:0]
YCbCr
VBI
Data
Slicer
Copy
Protection
Detector
C[9:0]
Host
Interface
Timing Processor
With Sync Detector
VI_1_A
VI_1_B
VI_1_C
VI_2_A
VI_2_B
VI_2_C
VI_3_A
VI_3_B
VI_3_C
VI_4_A
CVBS/
Y/G
CVBS/
Pb/B/C
CVBS/
Pr/R/C
CVBS/Y
CVBS/Y/G
Analog Front End
Sampling
Clock
GPIO
FSS
HS/CS
VS/VBLK
FID
AVID
XTAL1
XTAL2
DATACLK
RESETB
GLCO
PWDN
SCL
SDA
YCbCr
Figure 1−1. Functional Block Diagram
VLLB [ VLLC [ CHLASSGND [ CHLASSVDD [ CH27A33VDD [ CH27A33GND [ VL27A [ VL2iB [ szic [ CH27A18GND [ CH27A18VDD [ A18VDD7REF [ A18GND7REF [ CH37A18VDD [ CH37A18GND [ VljiA [ vLaj [ vLaic [ CHILASSGND [ CHILASSVDD [ 1—11—11—11—11—11—11—11—11—11—11—11—11—11—11—11—11—11—11—11—1 mummbwmA 1o 11 12 13 14 15 16 17 1a 19 20 21 \_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_A 1_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_1
1−5
1.6 Terminal Assignments
22 23
C_6/GPIO
C_7/GPIO
C_8/GPIO
C_9/GPIO
DGND
DVDD
Y_0
Y_1
Y_2
Y_3
Y_4
IOGND
IOVDD
Y_5
Y_6
Y_7
Y_8
Y_9
DGND
DVDD
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
VI_1_B
VI_1_C
CH1_A33GND
CH1_A33VDD
CH2_A33VDD
CH2_A33GND
VI_2_A
VI_2_B
VI_2_C
CH2_A18GND
CH2_A18VDD
A18VDD_REF
A18GND_REF
CH3_A18VDD
CH3_A18GND
VI_3_A
VI_3_B
VI_3_C
CH3_A33GND
CH3_A33VDD
25 26 27 28
PFP PACKAGE
(TOP VIEW)
79 78 77 76 7580 74 72 71 7073
29 30 31 32 33
69 68
21
67 66 65 64
34 35 36 37 38 39 40
63 62 61
VI_1_A
CH1_A18GND
CH1_A18VDD
PLL_A18GND
PLL_A18VDD
XTAL2
XTAL1
VS/VBLK/GPIO
HS/CS/GPIO
FID/GPIO
C_0/GPIO
C_1/GPIO
DGND
DVDD
C_2/GPIO
C_3/GPIO
C_4/GPIO
C_5/GPIO
IOGND
IOVDD
CH4_A33VDD
CH4_A33GND
VI_4_A
CH4_A18GND
CH4_A18VDD
AGND
DGND
SCL
SDA
INTREQ
DVDD
DGND
PWDN
RESETB
FSS/GPIO
AVID/GPIO
GLCO/I2CA
IOVDD
IOGND
DATACLK
Figure 1−2. Terminal Assignments Diagram
1−6
1.7 Terminal Functions
Table 1−1. Terminal Functions
TERMINAL
I/O
DESCRIPTION
NAME NUMBER
I/O
DESCRIPTION
Analog Video
VI_1_A
VI_1_B
VI_1_C
VI_2_A
VI_2_B
VI_2_C
VI_3_A
VI_3_B
VI_3_C
VI_4_A
80
1
2
7
8
9
16
17
18
23
I
VI_1_x: Analog video input for CVBS/Pb/B/C
VI_2_x: Analog video input for CVBS/Y/G
VI_3_x: Analog video input for CVBS/Pr/R/C
VI_4_A: Analog video input for CVBS/Y
Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof)
can be supported.
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF.
The possible input configurations are listed in the input select register at I2C subaddress 00h (see
Section 2.11.1).
Clock Signals
DATACLK 40 O Line-locked data output clock
XTAL1 74 I External clock reference input. It can be connected to an external oscillator with a 1.8-V compatible clock
signal or to a 14.31818-MHz crystal oscillator.
XTAL2 75 O External clock reference output. Not connected if XTAL1 is driven by an external single-ended oscillator.
Digital Video
C_[9:0]/
GPIO
57, 58,
59, 60,
63, 64,
65, 66,
69, 70
O
Digital video output of CbCr, C_9 is MSB and C_0 is LSB. Unused outputs can be left unconnected. Also,
these terminals can be programmable general-purpose I/O.
For the 8-bit mode, the two LSBs are ignored.
C1 needs a pulldown resistor (see Figure 5−1).
Y_[9:0]
43, 44,
45, 46,
47, 50,
51, 52,
53, 54
ODigital video output of Y/YCbCr, Y_9 is MSB and Y_0 is LSB.
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.
Miscellaneous Signals
FSS/GPIO 35 I/O
Fast-switch (blanking) input. Switching signal between the synchronous component video (YPbPr/RGB)
and the composite video input.
Programmable general-purpose I/O
GLCO/I2CA 37 I/O Genlock control output (GLCO)
During reset, this terminal is an input used to program the I2C address LSB.
INTREQ 30 O Interrupt request
PWDN 33 I
Power-down input:
1 = Power down
0 = Normal mode
RESETB 34 I Reset input, active low
1−7
Table 1−1. Terminal Functions (Continued)
TERMINAL
I/O
NAME NUMBER
I/O
Host Interface
SCL 28 I I2C clock input
SDA 29 I/O I2C data bus
Power Supplies
AGND 26 I Analog ground. Connect to analog ground.
A18GND_REF 13 I Analog 1.8-V return
A18VDD_REF 12 I Analog power for reference 1.8 V
CH1_A18GND
CH2_A18GND
CH3_A18GND
CH4_A18GND
79
10
15
24
IAnalog 1.8-V return
CH1_A18VDD
CH2_A18VDD
CH3_A18VDD
CH4_A18VDD
78
11
14
25
IAnalog power. Connect to 1.8 V.
CH1_A33GND
CH2_A33GND
CH3_A33GND
CH4_A33GND
3
6
19
22
IAnalog 3.3-V return
CH1_A33VDD
CH2_A33VDD
CH3_A33VDD
CH4_A33VDD
4
5
20
21
IAnalog power. Connect to 3.3 V.
DGND 27, 32, 42,
56, 68 IDigital return
DVDD 31, 41, 55,
67 IDigital power. Connect to 1.8 V.
IOGND 39, 49, 62 IDigital power return
IOVDD 38, 48, 61 IDigital power. Connect to 3.3 V or less for reduced noise.
PLL_A18GND 77 I Analog power return
PLL_A18VDD 76 I Analog power. Connect to 1.8 V.
Sync Signals
HS/CS/GPIO 72 I/O Horizontal sync output or digital composite sync output
Programmable general-purpose I/O
VS/VBLK/GPIO 73 I/O Vertical sync output (for modes with dedicated VSYNC) or VBLK output
Programmable general-purpose I/O
FID/GPIO 71 I/O Odd/even field indicator output. This terminal needs a pulldown resistor (see Figure 5−1).
Programmable general-purpose I/O
AVID/GPIO 36 I/O Active video indicator output
Programmable general-purpose I/O
1−8
W W X“ X“ W W W . W W \ / \ / \ / W (“WiiWiiW‘: “““
2−1
2 Functional Description
2.1 Analog Processing and A/D Converters
Figure 2−1 shows a functional diagram of the analog processors and ADCs. This block provides the analog interface
to all video inputs. It accepts up to 10 inputs and performs source selection, video clamping, video amplification, A/D
conversion, and gain and offset adjustments to center the digitized video signal.
Clamp PGA 10-Bit
ADC
CH4 A/D
PGA
CH1 A/D
PGA
CH2 A/D
PGA
CH3 A/D
Line-Locked Sampling Clock
TVP5146 Analog Front End
VI_4_A
M
U
X
VI_1_A
VI_1_B
VI_1_C
M
U
X
VI_2_A
VI_2_B
VI_2_C
M
U
X
VI_3_A
VI_3_B
VI_3_C
10-Bit
ADC
10-Bit
ADC
10-Bit
ADC
Clamp
Clamp
Clamp
Figure 2−1. Analog Processors and A/D Converters
2.1.1 Video Input Switch Control
The TVP5146 decoder has 4 analog channels that accept up to 10 video inputs. The user can configure the internal
analog video switches via the I2C interface. The 10 analog video inputs can be used for different input configurations,
some of which are:
Up to 10 selectable individual composite video inputs
Up to four selectable S-video inputs
Up to three selectable analog YPbPr/RGB video inputs and one CVBS input
Up to two selectable analog YPbPr/RGB video inputs, two S-video inputs, and two CVBS inputs
The input selection is performed by the input select register at I2C subaddress 00h (see Section 2.11.1).
2−2
2.1.2 Analog Input Clamping
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit provides
line-by-line restoration of the video sync level to a fixed dc reference voltage. The selection between bottom and mid
clamp is performed automatically by the TVP5146 decoder.
2.1.3 Automatic Gain Control
The TVP5146 decoder uses four programmable gain amplifiers (PGAs), one per channel. The PGA can scale a signal
with a voltage-input compliance of 0.5-VPP to 2-VPP to a full-scale 10-bit A/D output code range. A 4-bit code sets
the coarse gain with individual adjustment per channel. Minimum gain corresponds to a code 0x0 (2-VPP full-scale
input, –6-dB gain) while maximum gain corresponds to code 0xF (0.5 VPP full scale, +6-dB gain). The TVP5146
decoder also has 12-bit fine gain controls for each channel and applies independently to coarse gain controls. For
composite video, the input video signal amplitude can vary significantly from the nominal level of 1 VPP. The TVP5146
decoder can adjust its PGA setting automatically: an AGC can be enabled and can adjust the signal amplitude such
that the maximum range of the ADC is reached without clipping. Some nonstandard video signals contain peak white
levels that saturate the ADC. In these cases, the AGC automatically cuts back gain to avoid clipping. If the AGC is
on, then the TVP5146 decoder can read the gain currently being used.
The TVP5146 AGC comprises the front-end AGC before Y/C separation and the back-end AGC after Y/C separation.
The back-end AGC restores the optimum system gain whenever an amplitude reference such as the composite peak
(which is only relevant before Y/C separation) forces the front-end AGC to set the gain too low. The front-end and
back-end AGC algorithms can use up to four amplitude references: sync height, color burst amplitude, composite
peak, and luma peak.
The specific amplitude references being used by the front-end and back-end AGC algorithms can be independently
controlled using the AGC white peak processing register located at subaddress 74h. The TVP5146 gain increment
speed and gain increment delay can be controlled using the AGC increment speed register located at subaddress
78h and the AGC increment delay register located at subaddress 79h, respectively.
2.1.4 A/D Converters
All ADCs have a resolution of 10 bits and can operate up to 30 MSPS. All A/D channels receive an identical clock
from the on-chip phase-locked loop (PLL) at a frequency between 24 MHz and 30 MHz. All ADC reference voltages
are generated internally.
2.2 Digital Video Processing
Figure 2−2 is a block diagram of the TVP5146 digital video decoder processor. This processor receives digitized
video signals from the ADCs and performs composite processing for CVBS and S-video inputs, YCbCr signal
enhancements for CVBS and S-video inputs, and YPbPr/RGB processing for component video inputs. It also
generates horizontal and vertical syncs and other output control signals such as genlock for CVBS and S-video inputs.
Additionally, it can provide field identification, horizontal and vertical lock, vertical blanking, and active video window
indication signals. The digital data output can be programmed to two formats: 20-bit 4:2:2 with external syncs or 10-bit
4:2:2 with embedded/separate syncs. The circuit detects pseudosync pulses, AGC pulses, and color striping in
Macrovision-encoded copy-protected material. Information present in the VBI interval can be retrieved and either
inserted in the ITU-R BT.656 output as ancillary data or stored in internal FIFO and/or registers for retrieval via the
host port interface.
2−3
Copy
Protection
Detector
VBI Data
Processor
Output
Formatter
Composite
Processor
CVBS/Y
CYCbCr
Y[9:0]
Timing
Processor
AVID
FID
GLCO
XTAL1
XTAL2
RESETB
Component
Processor
CH1 A/D
CH2 A/D
CH3 A/D
Pr/R
Pb/B
Y/G
YCbCr
FSS
HS/CS
VS/VBLK
DATACLK
C[9:0]
CH4 A/D
CVBS/Y/G
Host
Interface
SCL
SDA
Slice VBI Data
2
Decimation
PWDN
2
Decimation
2
Decimation
2
Decimation
Figure 2−2. Digital Video Processor Block Diagram
2.2.1 2 Decimation Filter
All input signals are oversampled by a factor of 2 (27 MHz). The A/D outputs first pass through decimation filters that
reduce the data rate to 1× the pixel rate. The decimation filter is a half-band filter. Oversampling and decimation
filtering can effectively increase the overall signal-to-noise ratio by 3 dB.
2.2.2 Composite Processor
Figure 2−3 is a block diagram of the TVP5146 digital composite video processing circuit. This circuit receives a
digitized composite or S-video signal from the ADCs and performs Y/C separation (bypassed for S-video input),
chroma demodulation for PAL/NTSC and SECAM, and YUV signal enhancements.
The 10-bit composite video is multiplied by the subcarrier signals in the quadrature demodulator to generate color
difference signals U and V. The U and V signals are then sent to low-pass filters to achieve the desired bandwidth.
An adaptive 5-line comb filter separates UV from Y based on the unique property of color phase shifts from line to
line. The chroma is remodulated through a quadrature modulator and subtracted from line-delayed composite video
to generate luma. This form of Y/C separation is completely complementary, thus there is no loss of information.
However, in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters
can be turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path.
Contrast, brightness, sharpness, hue, and saturation controls are programmable through the host port.
i l i
2−4
Line
Delay
Peaking
NTSC/PAL
Remodulation
NTSC/PAL
Demodulation
Notch
Filter
Color LPF
2
5-Line
Adaptive
Comb
Filter
Notch
Filter
Notch
Filter
Notch
Filter
Contrast
Brightness
Saturation
Adjust
Cr
Y
Cb
Y
Burst
Accumulator
(U)
U
SECAM
Color
Demodulation
V
Delay
CVBS/Y
SECAM Luma
CVBS
CVBS/C
Color LPF
2
Burst
Accumulator
(V)
U
V
Delay
Delay
Figure 2−3. Composite and S-Video Processor Block Diagram
2.2.2.1 Color Low-Pass Filter
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for video
sources that have asymmetrical U and V side bands, it is desirable to limit the filter bandwidth to avoid UV crosstalk.
The color low-pass filter bandwidth is programmable to enable one of the three notch filters. Figure 2−4 through
Figure 2−7 represent the frequency responses of the wideband color low-pass filters.
0 0 —3 an @ 767 km §\ PAL sop —3 dB \ S i ‘ ‘ Filter 0 —10 @ 1.55 MHx 7 >10 \ _3 dB@1.29 MHz 7 i i i —20 >20 3 Finer 3 X\ ' \\ _3 as @ 504 kHz .30 § .30 1 1 5 Filter 1 ITU-R 31.601 —3 as g- 4 an ( 4° 5 @1.42 MHz A \ ’4” ’ @936 kHz 7 —50 >50 msc sop—3 dB \\ u v V -50 7 @129 MHz >60 _,,iiii\\ \ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 r— Frequency — MHl l— Frequency — MHz Figure 2-4. Color Low-Pass Filter Frequency Figure 2-5. Color Low-Pass Filter With Filter Response Frequency Response, NTSC Square Pixel Sampling 10 10 Finer 2 Finer 2 ‘ —3 dB @ 044 kHz —3 as @ 922 m 0 0 . , Finer 0 'E g Finer0 \ —3dB@1.41MH1 \ §< —3="" db@1.55="" mhz="" -10="" \="" v="" ‘="" ‘="" ‘="">10 F“ 3 1 er i) Finer 3 —3 as E; —20 \ \ E363 as @554 11H: , 3; >20 / x @505 km 7 a. Filter 1 u Finer 1 3 '3” V -3 dB ’ 3 ’3” —3 dB 5;. h \ \@1.03MH1 g. u \\ @1.13MHz ( —40 AV \ ( >40 1 —50 >50 \ —50 >60 —70 \ >70 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 r— Frequency — MHl l— Frequency — MHz Figure 2-6. Color Low-Pass Filter With Filter Figure 2-7. Color Low-Pass Filter With Filter Characteristics, NTSC/PAL lTU-R BT.601 Characteristics, PAL Square Pixel Sampling Sampling 275
2−5
Figure 2−4. Color Low-Pass Filter Frequency
Response
Figure 2−5. Color Low-Pass Filter With Filte
r
Frequency Response, NTSC Square Pixel
Sampling
f – Frequency – MHz
−70
−60
−50
−40
−30
−20
−10
0
10
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
PAL SQP –3 dB
@ 1.55 MHz
NTSC SQP –3 dB
@ 1.29 MHz
ITU-R BT.601 –3 dB
@ 1.42 MHz
Amplitude − dB
f – Frequency – MHz
−70
−60
−50
−40
−30
−20
−10
0
10
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Amplitude − dB
Filter 0
–3 dB @ 1.29 MHz
Filter 1
–3 dB
@ 936 kHz
Filter 3
–3 dB @ 504 kHz
Filter 2
–3 dB @ 767 kHz
−70
−60
−50
−40
−30
−20
−10
0
10
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Figure 2−6. Color Low-Pass Filter With Filter
Characteristics, NTSC/PAL ITU-R BT.601
Sampling
Figure 2−7. Color Low-Pass Filter With Filte
r
Characteristics, PAL Square Pixel Sampling
f – Frequency – MHz
−70
−60
−50
−40
−30
−20
−10
0
10
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Amplitude − dB
Filter 3
–3 dB @ 554 kHz
Filter 2
–3 dB @ 844 kHz
Filter 1
–3 dB
@ 1.03 MHz
Filter 0
–3 dB @ 1.41 MHz
f – Frequency – MHz
Amplitude − dB
Filter 3
–3 dB
@ 605 kHz
Filter 0
–3 dB @ 1.55 MHz
Filter 2
–3 dB @ 922 kHz
Filter 1
–3 dB
@ 1.13 MHz
Amplitude — dB Amplilude — as 276 -5 ”< \\\="" i="" \\="" \="" ii="" i="" -20="" m="" m="" notch="" 3="" filter="" r="" i="" ii="" iii="" i="" i="" i="" 45="" no="" notch="" filter="" i="" i="" r—="" frequency="" —="" mhl="" figure="" 2-8.="" chroma="" trap="" filter="" frequency="" response,="" ntsc="" square="" pixel="" sampling="" l0="" ‘="" ‘="" 5="" notch="" a="" finer="" i="" -5="" v="" 40="" 7="" 7%7="" notch="" 1="" finer="" ‘15="" i="" i="" i="" 7="" \="" ii="" i="" ‘20="" notch="" 2="" filter="" \="" i="" ‘25="" ”="" i="" i/="" i="" ‘5‘"="" i="" no="" notch="" filter="" \="" i="" 45="" -40="" i="" i="" a="" 1="" 2="" 3="" 4="" 5="" 6="" 7="" l—="" frequency="" —="" mhz="" figure="" 2-10.="" chroma="" trap="" filter="" frequency="" response,="" pal="" ltu-r="" b11601="" sampling="" amplilude="" —db="" amplitude="" —="" as="" .5="" \="" \="" ,="" noteh1filter="" “="" i="" m="" ii="" ’="" notch="" 2="" filter)‘="" \\="" \\\="" \\="" \="" \="" \="" i="" i="" —30="" ,="" no="" notch="" filter="" i="" \\\="" i="" i="" i="" 2="" 3i="" ii="" a="" r—="" frequency="" —="" mhl="" figure="" 2-9.="" chroma="" trap="" filter="" frequency="" response,="" ntsc="" ltu-r="" b11601="" sampling="" 1!)="" 5="" notch="" 3="" filter="" i="" iii="" '20="" latch="" 2‘="" filter="" fl="" i="" .25="" i="" i="" i="" '3”="" i="" no="" notch="" filter="" i="" i="" i="" i="" .35="" ii="" i="" .40="" i="" i="" r—="" frequency="" —="" mhz="" figure="" 2-11.="" chroma="" trap="" filter="" frequency="" response,="" pal="" square="" pixel="" sampling="">
2−6
2.2.2.2 Y/C Separation
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The comb filter can
be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, then chroma trap
filters are used which are shown in Figure 2−8 through Figure 2−11. TI’s patented adaptive comb filter algorithm
reduces artifacts such as hanging dots at color boundaries. It detects and properly handles false colors in high
frequency luminance images, such as a multiburst pattern or circle pattern. Adaptive comb filtering is the
recommended mode of operation.
−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
01234567
f – Frequency – MHz
No Notch Filter
Notch 3 Filter
Notch 2 Filter
Amplitude − dB
Figure 2−8. Chroma Trap Filter Frequency
Response, NTSC Square Pixel Sampling
Notch 1 Filter
f – Frequency – MHz
−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
01234567
No Notch Filter
Notch 3 Filter
Notch 1 Filter
Amplitude − dB
Figure 2−9. Chroma Trap Filter Frequency
Response, NTSC ITU-R BT.601 Sampling
Notch 2 Filter
−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
01234567
Figure 2−10. Chroma Trap Filter Frequency
Response, PAL ITU-R BT.601 Sampling Figure 2−11. Chroma Trap Filter Frequency
Response, PAL Square Pixel Sampling
f – Frequency – MHz
Amplitude − dB
No Notch Filter
Notch 2 Filter
Notch 1 Filter
Notch 3 Filter
f – Frequency – MHz
−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
01234567
Amplitude − dB
No Notch Filter
Notch 2 Filter
Notch 1 Filter
Notch 3 Filter
Amplilude —aa Gain : \ Peak al q f: 2.40 MHz 2 \ Gain = 0.5 fl/fi m ain:0 2 a 4 5 c— Frequency — MH1 K 2 :4 4 5 4— Frequency — MHz
2−7
2.2.3 Luminance Processing
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter, either of
which removes chrominance information from the composite signal to generate a luminance signal. The luminance
signal is then fed into the input of a peaking circuit. Figure 2−12 illustrates the basic functions of the luminance data
path. In the case of S-video, the luminance signal bypasses the comb filter or chroma trap filter and is fed directly
to the circuit. High-frequency components of the luminance signal are enhanced by a peaking filter (sharpness).
Figure 2−13, Figure 2−14, and Figure 2−15 show the characteristics of the peaking filter at four different gain settings
that are programmable via the host port.
Bandpass
Filter x
Gain
Peaking
Filter
IN
+OUT
Delay
Peak
Detector
Figure 2−12. Luminance Edge-Enhancer Peaking Block Diagram
f – Frequency – MHz
−1
0
1
2
3
4
5
6
7
01234567
Gain = 0
Gain = 2
Gain = 1
Gain = 0.5
Peak at
f = 2.40 MHz
Amplitude − dB
f – Frequency – MHz
−1
0
1
2
3
4
5
6
7
01234567
Gain = 0
Gain = 2
Gain = 1
Gain = 0.5
Peak at
f = 2.64 MHz
Amplitude − dB
Figure 2−13. Peaking Filter Response, NTSC
Square Pixel Sampling Figure 2−14. Peaking Filter Response,
NTSC/PAL ITU-R BT.601 Sampling
Q\
2−8
f – Frequency – MHz
−1
0
1
2
3
4
5
6
7
01234567
Gain = 0
Gain = 2
Peak at
f = 2.89 MHz
Gain = 0.5
Gain = 1
Amplitude − dB
Figure 2−15. Peaking Filter Response, PAL Square Pixel Sampling
2.2.3.1 Color Transient Improvement
Color transient improvement (CTI) enhances horizontal color transients by delay modulation for both color difference
signals. The operation must be performed only on YCbCr-formatted data. The color difference signal transition points
are maintained, but the edges are enhanced for signals which have bandwidth-limited color components (for
example, CVBS and S-video).
2.2.4 Component Video Processor
The component video processing block supports a user-selectable contrast, brightness, and saturation adjustment
in YCbCr output formats. For YCbCr output formats, gain and offset values are applied to the luma data path in order
to map the pixel values to the correct output range (for 10-bit Ymin = 64 and Ymax = 940), and to provide a means of
adjusting contrast and brightness. For Y, digital contrast (gain) and brightness (offset) factors can vary from 0 to 255.
The contrast control adjusts the amplitude range of the Y output centered at the midpoint of the output code range.
The limit block limits the output to the ITU-R BT.601 range (Ymin to Ymax) or an extended range, depending on a user
setting.
x
Gain
YY
Limit+
Offset
Figure 2−16. Y Component Gain, Offset, Limit
XTAL2 XTAL2 Ema
2−9
For CbCr components, a saturation (gain) factor is applied to the CbCr inputs in order to map them to the CbCr output
code range and provide saturation control. Similarly, the limit block can limit CbCr outputs to a valid range:
Cb,Crmin = 64 / Cb,Crmax = 960
x
Gain
CbCr CbCr
Limit
Figure 2−17. CbCr Component Gain, Offset, Limit
2.2.5 Color Space Conversion
The formulas for RGB to YCbCr conversion are given as:
Y = 0.299 × R + 0.587 × G + 0.114 × B
Cb = –0.172 × R – 0.339 × G + 0.511 × B + 512
Cr = 0.511 × R – 0.428 × G – 0.083 × B + 512
2.3 Clock Circuits
An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is required to drive the PLL.
This can be input to the TVP5146 decoder at the 1.8-V level on terminal 74 (XTAL1), or a crystal of 14.31818-MHz
fundamental resonant frequency can be connected across terminals 74 and 75 (XTAL2). If a parallel resonant circuit
is used as shown in Figure 2−18, then the external capacitors must have the following relationship:
CL1 = CL2 = 2CL – CSTRAY,
where CSTRAY is the terminal capacitance with respect to ground. Figure 2−18 shows the reference clock
configurations. The TVP5146 decoder generates the DATACLK signal used for clocking data.
TVP5146
74
XTAL1
14.31818-MHz
Crystal
75
XTAL2
TVP5146
74
XTAL1
75
XTAL2
CL1
CL2
14.31818-MHz
Clock
Figure 2−18. Reference Clock Configurations
2.4 Real-Time Control (RTC)
Although the TVP5146 decoder is a line-locked system, the color burst information is used to determine accurately
the color subcarrier frequency and phase. This ensures proper operation with nonstandard video signals that do not
follow exactly the required frequency multiple between color subcarrier frequency and video line frequency. The
frequency control word of the internal color subcarrier PLL and the subcarrier reset bit are transmitted via terminal 37
(GLCO) for optional use in an end system (for example, by a video encoder). The frequency control word is a 23-bit
binary number. The instantaneous frequency of the color subcarrier can be calculated from the following equation:
FPLL +Fctrl
223 Fsclk
where FPLL is the frequency of the subcarrier PLL, Fctrl is the 23-bit PLL frequency control word, and Fsclk is two times
the pixel frequency. Figure 2−19 shows the detailed timing diagram.
2710 RTC \ ‘F7 128 CLK \ \ 4» FIBCLK 4': 1‘71CLK Stan Bil 45 c 23-Bil Fsc PL
2−10
RTC
45 CLK18 CLK
L
S
B
0
3 CLK128 CLK
23-Bit Fsc PLL Increment
Start
Bit
1 CLK
RS
Invalid
Sample
Valid
Sample
M
S
B
22
Reserved
NOTE: RTC Reset bit (R) is active low, Sequence bit (S) PAL:1 = (R-Y) line normal, 0 = (R-Y) line inverted, NTSC: 1 = no change
Figure 2−19. RTC Timing
2.5 Output Formatter
The output formatter sets how the data is formatted for output on the TVP5146 output buses. Table 2−1 shows the
available output modes.
Table 2−1. Output Format
TERMINAL
NAME TERMINAL
NUMBER 10-Bit 4:2:2 YCbCr 20-Bit 4:2:2
YCbCr
Y_9 43 Cb9, Y9, Cr9 Y9
Y_8 44 Cb8, Y8, Cr8 Y8
Y_7 45 Cb7, Y7, Cr7 Y7
Y_6 46 Cb6, Y6, Cr6 Y6
Y_5 47 Cb5, Y5, Cr5 Y5
Y_4 50 Cb4, Y4, Cr4 Y4
Y_3 51 Cb3, Y3, Cr3 Y3
Y_2 52 Cb2, Y2, Cr2 Y2
Y_1 53 Cb1, Y1, Cr1 Y1
Y_0 54 Cb0, Y0, Cr0 Y0
C_9 57 Cb9, Cr9
C_8 58 Cb8, Cr8
C_7 59 Cb7, Cr7
C_6 60 Cb6, Cr6
C_5 63 Cb5, Cr5
C_4 64 Cb4, Cr4
C_3 65 Cb3, Cr3
C_2 66 Cb2, Cr2
C_1 69 Cb1, Cr1
C_0 70 Cb0, Cr0
2−11
Table 2−2. Summary of Line Frequencies, Data Rates, and Pixel/Line Counts
STANDARDS PIXELS PER
LINE ACTIVE PIXELS
PER LINE LINES PER
FRAME
PIXEL
FREQUENCY
(MHz)
COLOR
SUBCARRIER
FREQUENCY (MHz)
HORIZONTAL
LINE RATE (kHz)
601 sampling
NTSC-J, M 858 720 525 13.5 3.579545 15.73426
NTSC-4.43 858 720 525 13.5 4.43361875 15.73426
PAL-M 858 720 525 13.5 3.57561149 15.73426
PAL-60 858 720 525 13.5 4.43361875 15.73426
PAL-B, D, G, H, I 864 720 625 13.5 4.43361875 15.625
PAL-N 864 720 625 13.5 4.43361875 15.625
PAL-Nc 864 720 625 13.5 3.58205625 15.625
SECAM 864 720 625 13.5 Dr = 4.406250
Db = 4.250000 15.625
Square sampling
NTSC-J, M 780 640 525 12.2727 3.579545 15.73426
NTSC-4.43 780 640 525 12.2727 4.43361875 15.73426
PAL-M 780 640 525 12.2727 3.57561149 15.73426
PAL-60 780 640 525 12.2727 4.43361875 15.73426
PAL-B, D, G, H, I 944 768 625 14.75 4.43361875 15.625
PAL-N 944 768 625 14.75 4.43361875 15.625
PAL-Nc 944 768 625 14.75 3.58205625 15.625
SECAM 944 768 625 14.75 Dr = 4.406250
Db = 4.250000 15.625
2.5.1 Fast Switches for SCART
The TVP5146 decoder supports the SCART interface used in European audio/video end equipment to carry
composite video, S-video, and RGB video on the same cable. In the event that composite video and RGB video are
present simultaneously on the video terminals assigned to a SCART interface, the TVP5146 decoder assumes they
are pixel synchronous to each other. The timing for both composite video and RGB video is obtained from the
composite source, and its derived clock is used to sample RGB video as well. The fast-switch input terminal allows
switching between these two input video sources on a pixel-by-pixel basis. The fast switch is a hard switch; there is
no alpha blending between both sources.
2.5.2 Separate Syncs
VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows any possible alignment
to the internal pixel count and line count. The default settings for 525-line and 625-line video outputs are given as
examples below. FID changes at the same transient time when the trailing edge of vertical sync occurs. The polarity
of FID is programmable by an I2C interface.
Firsl Field Video VS FID VBLK Second Field Video VS 2712 i i i i i i i i i i i i i i i i ‘LIJLILIuJLILImLILIULILI’fiJuu i —?— —fi— 1 4—» 4—i—r 1 i
2−12
First Field Video
525
VS
VBLK
FID
1234567891011 2122
525-Line
HS
VS Start VS Stop
CS
VBLK Start VBLK Stop
Second Field Video
262
VS
VBLK
FID
263 264 265 266 267 268 269 270 271 272 273 284 285
HS
VS Start VS Stop
CS
VBLK Start VBLK Stop
NOTE: Line numbering conforms to ITU-R BT.470
Figure 2−20. Vertical Synchronization Signals for 525-Line System
Fi Isl Field Video HS VS CS FID VBLK Second Field Video HS VS CS FID VBLK \ x x x x x x x x x x x x x x x \ ‘upuuwuuwuuuuufilju \ ‘ x _9— VBLK Slat! ‘310‘311‘fll2‘313‘314‘31 5‘3|6‘3|7‘318‘319‘320‘321‘ ‘ ‘ ‘ ‘ WWW—FU— ‘Llpumu muuuuuufilju \ ‘ x x 1 ‘ . PH 1 \ vs Star: vs Slop \ VBLK Slat!
2−13
First Field Video
VS
VBLK
FID
625-Line
HS
VS Start VS Stop
CS
VBLK Start VBLK Stop
Second Field Video
310
VS
VBLK
FID
311 312 313 314 315 316 317 318 319 320 321 336 337
HS
VS Start VS Stop
CS
VBLK Start VBLK Stop
6226236246251234567 2324258
338
NOTE: Line numbering conforms to ITU-R BT.470
Figure 2−21. Vertical Synchronization Signals for 625-Line System
2714 EAV EAV EAV EAV —é——J,S—‘\——— V[9:0] Cb v Cr 11 1 2 3 4 ‘ ‘ -r-%%-r-- 1 H1 «b 1 1 1 1 1 1 1 —55—‘ 1 1% a: ‘H a: 1 1 1 1 1 f i 1 14 .1 4—> I I 4—> AVID smp DATACLK : 2 X Pixe Mode A B NTSCem 106 12a PALSOI 112 12a NTSCqu ma 123 PAL Sun 144 123
2−14
NTSC 601 106
PAL 601
NTSC Sqp
PAL Sqp
112
108
144
128
128
128
128
42
48
44
80
276
288
280
352
Y[9:0]
DATACLK = 2 Pixel Clock
Mode A BCD
Cb
D
ATACLK
EAV
1
Y Cr Y EAV
2EAV
3EAV
4SAV
1SAV
2SAV
3SAV
4Cb0 Y0 Cr0 Y1
0
HS Start
Horizontal Blanking
HS
HS Stop
A C
B
AVID
D
AVID Stop AVID Start
NOTE: ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference
Figure 2−22. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode
mm] v v v v CbCl[9:D] Cb Cl Cb Cr \ \ _?___gg____ _"___3$_ __ \ _‘l___5§____ Horizonla _"___5§____ 4—l—> 4—} HS Slat! H HS AVID \ x x x \ :47A \ \ —w—‘ A 4L 4T <—> AVID smp NOTE. Avm nsmg edge occurs 2 dock cyc‘es ear‘y DATACLK = 1 X Pixel Clock Mode A B C D NTSCSOI 53 64 19 136 PALsm 56 64 22 142 NTSCqu 54 64 20 135 PALqu 72 64 aa 174 245
2−15
54
72
64
64
20
38
138
174
22
53 64 19
56
CbCr[9:0]
NTSC 601
PAL 601
DATACLK = 1 Pixel Clock
NTSC Sqp
PAL Sqp
64
Mode A BC
136
142
D
Cb
D
ATACLK
Cr Cb Cr Cb0 Cr0 Cb1 Cr1
0
HS Start
Horizontal Blanking
HS
HS Stop
A C
B
AVID
D
NOTE: AVID rising edge occurs 2 clock cycles early.
Y[9:0] Y Y Y Y Y0 Y1 Y2 Y3Horizontal Blanking
2
AVID Stop AVID Start
NOTE: 20-bit 4:2:2 timing with 1× pixel clock reference
Figure 2−23. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode
J HS Firsl Field 4»; R7 3/2 H‘ >47 vs 1: HS H Second Field 147 H/2 . 5/2 AN‘ :4, 4y‘ vs — J 10-Bit (PCLK = 2 X Pixel Clock) 3/2 H/2 NTSC em 64 553 PAL em 64 864 NTSC my 64 7510 PAL qu 64 944 Mode 2716
2−16
NTSC 601 64
PAL 601
10-Bit (PCLK = 2 Pixel Clock)
NTSC Sqp
PAL Sqp
64
64
64
Mode B/2
First Field B/2
858
864
780
944
H/2
32
20-Bit (PCLK = 1 Pixel Clock)
32
32
32
B/2
429
432
390
472
H/2
HS
VS
Second Field
HS
VS
B/2
H/2 + B/2 H/2 + B/2
Figure 2−24. VSYNC Position With Respect to HSYNC
2.5.3 Embedded Syncs
Standards with embedded syncs insert the SAV and EAV codes into the data stream on the rising and falling edges
of AVID. These codes contain the V and F bits which also define vertical timing. Table 2−3 gives the format of the SAV
and EAV codes.
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and field
counter varies depending on the standard.
The P bits are protection bits:
P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H
Table 2−3. EAV and SAV Sequence
D9 (MSB) D8 D7 D6 D5 D4 D3 D2 D1 D0
Preamble 1 1 1 1 1 1 1 1 1 1
Preamble 0 0 0 0 0 0 0 0 0 0
Preamble 0 0 0 0 0 0 0 0 0 0
Status word 1 F V H P3 P2 P1 P0 0 0
2.6 I2C Host Interface
Communication with the TVP5146 decoder is via an I2C host interface. The I2C standard consists of two signals, the
serial input/output data (SDA) line and the serial input clock line (SCL), which carry information between the devices
connected to the bus. A third signal (I2CA) is used for slave address selection. Although an I2C system can be
multimastered, the TVP5146 decoder functions as a slave device only.
2−17
Because SDA and SCL are kept open-drain at a logic-high output level or when the bus is not driven, the user must
connect SDA and SCL to a positive supply voltage via a pullup resistor on the board. The slave-address select signal,
terminal 37 (I2CA), enables the use of two TVP5146 decoders tied to the same I2C bus by controlling the least
significant bit of the I2C device address.
Table 2−4. I2C Host Interface Terminal Description
SIGNAL TYPE DESCRIPTION
I2CA I Slave address selection
SCL I Input clock line
SDA I/O Input/output data line
2.6.1 Reset and I2C Bus Address Selection
The TVP5146 decoder can respond to two possible chip addresses. The address selection is made at reset by an
externally supplied level on the I2CA terminal. The TVP5146 decoder samples the level of terminal 37 at power up
or at the trailing edge of RESETB and configures the I2C bus address bit A0. The I2CA terminal has an internal
pulldown resistor to pull the terminal low to set a zero.
Table 2−5. I2C Address Selection
A6 A5 A4 A3 A2 A1 A0 (I2CA) R/W HEX
1011100 (default) 1/0 B9/B8
1011101 1/0 BB/BA
If terminal 37 is strapped to DVDD via a 2.2-k resistor, I2C device address A0 is set to 1.
2.6.2 I2C Operation
S 1011 1000 ACK Subaddress ACK Send data ACK P
Data transfers occur using the following illustrated formats.
Read from I2C control registers
S 1011 1000 ACK Subaddress ACK S 1011 1001 ACK Receive data NAK P
S = I2C bus start condition
P = I2C bus stop condition
ACK = Acknowledge generated by the slave
NAK = Acknowledge generated by the master, for multiple-byte read master with ACK for each byte except
last byte
Subaddrress = Subaddress byte
Data = Data byte, if more than one byte of data is transmitted (read and write), the subaddress pointer is
automatically incremented.
I2C bus address = Example showing that I2CA is in default mode. Write (B8h), read (B9h)
2.6.3 VBUS Access
The TVP5146 decoder has additional internal registers accessible through an indirect access to an internal 24-bit
address wide VBUS. Figure 2−25 shows the VBUS registers access.
2−18
Single Byte
B8S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
VBUS Write
B8S ACK E0 ACK Send Data ACK P
Multiple Bytes
B8
S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
B8S ACK E1 ACK Send Data ACK ACK PSend Data•••
Single Byte
B8
S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
VBUS Read
B8S ACK E0 ACK ACK
Multiple Bytes
B8
S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
B8S ACK E1 ACK ACK NAK PRead Data•••
Read Data NAK PSB9
SB9ACK Read Data
HOST
Processor I2C
VBUS
Data
I2C Registers
00h
E0h
E1h
VBUS
Address
E8h
EAh
FFh
VBUS[23:0]
Line
Mode
VBUS Registers
00 0000h
FIFO
VPS
VITC
WSS
CC 80 051Ch
80 0520h
80 052Ch
80 0600h
80 0700h
90 1904h
FF FFFFh
NOTE: Examples use default I2C address.
ACK = Acknowledge generated by the slave
NAK = No Acknowledge generated by the master
Figure 2−25. VBUS Access
2−19
2.6.4 I2C Timing Requirements
The TVP5146 decoder requires delays in the I2C accesses to accommodate the internal processor timing. In
accordance with I2C specifications, the TVP5146 decoder holds the I2C clock line (SCL) low to indicate the wait period
to the I2C master. If the I2C master is not designed to check for the I2C clock line held-low condition, then the maximum
delays must always be inserted where required. These delays are of variable length; maximum delays are indicated
in the following diagram:
Normal register
S 1011 1000 ACK Subaddress ACK Send data ACK Wait 64 µs P
2.7 VBI Data Processor
The TVP5146 VBI data processor (VDP) slices various data services like teletext (WST, NABTS), closed caption
(CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC), video program
system (VPS), copy generation management system (CGMS) data, and electronic program guide (Gemstar) 1x/2x.
Table 2−6 shows the supported VBI system.
These services are acquired by programming the VDP to enable the reception of one or more VBI data standard(s)
in the VBI. The VDP can be programmed on a line-per-line basis to enable simultaneous reception of different VBI
formats, one per line. The results are stored in a FIFO and/or registers. Because of its high data bandwidth, the teletext
results are stored in FIFO only. The TVP5146 decoder provides fully decoded V-CHIP data to the dedicated registers
at subaddresses 800540h–800543h (see Sections 2.12.4 through 2.12.7).
Table 2−6. Supported VBI Systems
VBI SYSTEM STANDARD LINE NUMBER NUMBER OF BYTES
Teletext WST A SECAM 6–23 (Fields 1 and 2) 38
Teletext WST B PAL 6–22 (Fields 1 and 2) 43
Teletext NABTS C NTSC 10–21 (Fields 1 and 2) 34
Teletext NABTS D NTSC-J 10–21 (Fields 1 and 2) 35
Closed caption PAL 22 (Fields 1 and 2) 2
Closed caption NTSC 21 (Fields 1 and 2) 2
WSS PAL 23 (Fields 1 and 2) 14 bits
WSS-CGMS NTSC 20 (Fields 1 and 2) 20 bits
VITC PAL 6–22 9
VITC NTSC 10–20 9
VPS (PDC) PAL 16 13
V-CHIP (decoded) NTSC 21 (Field 2) 2
Gemstar 1×NTSC 2
Gemstar 2×NTSC 5 with frame byte
User Any Programmable Programmable
Ancmary data preamb‘e
2−20
2.7.1 VBI FIFO and Ancillary Data in Video Stream
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is output on the
Y[9:2] terminals during the horizontal blanking period. Table 2−7 shows the header format and sequence of the
ancillary data inserted into the video stream. This format is also used to store any VBI data into the FIFO. The size
of the FIFO is 512 bytes. Therefore, the FIFO can store up to 11 lines of teletext data with the NTSC NABTS standard.
Table 2−7. Ancillary Data Format and Sequence
BYTE
NO. D7
(MSB) D6 D5 D4 D3 D2 D1 D0
(LSB) DESCRIPTION
0 00000000
1 11111111Ancillary data preamble
2 11111111
Ancillary data preamble
3 NEP EP 0 1 0 DID2 DID1 DID0 Data ID (DID)
4 NEP EP F5 F4 F3 F2 F1 F0 Secondary data ID (SDID)
5 NEP EP N5 N4 N3 N2 N1 N0 Number of 32-bit data (NN)
6Video line # [7:0] Internal data ID0 (IDID0)
7 0 0 0 Data
error
Match
#1
Match
#2
Video line # [9:8] Internal data ID1 (IDID1)
81. Data Data byte 1st word
92. Data Data byte
10 3. Data Data byte
11 4. Data Data byte
: : :
m. Data Data byte Nth word
CS[7:0] Check sum
4N+7 0 0 0 0 0 0 0 0 Fill byte
EP: Even parity for D0–D5 NEP: Negated even parity
DID: 91h: Sliced data of VBI lines of first field
53h: Sliced data of line 24 to end of first field
55h: Sliced data of VBI lines of second field
97h: Sliced data of line 24 to end of second field
SDID: This field holds the data format taken from the line mode register bits [2:0] of the corresponding line.
NN: Number of Dwords beginning with byte 8 through 4N+7. Note this value is the number of Dwords where
each Dword is 4 bytes.
IDID0: Transaction video line number [7:0]
IDID1: Bit 0/1 = Transaction video line number [9:8]
Bit 2 = Match 2 flag
Bit 3 = Match 1 flag
Bit 4 = 1 if an error was detected in the EDC block. 0 if no error was detected.
CS: Sum of D0–D7 of first data through last data byte.
Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the sync pattern
byte. Byte 9 is the first data byte.
(Le. NTSC 60‘ : n = mm
2−21
2.7.2 VBI Raw Data Output
The TVP5146 decoder can output raw A/D video data at twice the sampling rate for external VBI slicing. This is
transmitted as an ancillary data block, although somewhat differently from the way the sliced VBI data is transmitted
in the FIFO format as described in Section 2.7.1. The samples are transmitted during the active portion of the line.
VBI raw data uses ITU-R BT.656 format having only luma data. The chroma samples are replaced by luma samples.
The TVP5146 decoder inserts a four-byte preamble 000h 3FFh 3FFh 180h before data start. There are no checksum
bytes and fill bytes in this mode.
Table 2−8. VBI Raw Data Output Format
BYTE
NO. D9
(MSB) D8 D7 D6 D5 D4 D3 D2 D1 D0
(LSB) DESCRIPTION
00000000000
11111111111
VBI raw data preamble
21111111111VBI raw data preamble
30110000000
41. Data
52. Data
2 pixel rate luma data
: : 2× pixel rate luma data
(i.e., NTSC 601: n = 1707)
n–1 n–5. Data
(i.e., NTSC 601: n = 1707)
nn–4. Data
2.8 Reset and Initialization
Reset is initiated at power up or any time terminal 34 (RESETB) is brought low. Table 2−9 describes the status of the
TVP5146 terminals during and immediately after reset.
Table 2−9. Reset Sequence
SIGNAL NAME DURING RESET RESET COMPLETED
Y[9:0], C[9:0], DATACLK Input High-impedance
RESETB, PWDN, SDA, SCL, FSS,
AVID, GLCO, HS, VS, FID Input Input
INTREQ Input Output
DATACLK Output High-impedance
200 ns (min)
RESETB
(Terminal 34)
1 ms (min)
Invalid I2C Cycle Valid
Normal Operation
Reset
1 ms (min)
SDA
(Terminal 29)
POWER
(3.3 V and 1.8 V)
Figure 2−26. Reset Timing
2−22
The TVP5146 requires that terminal 69 (C_1/GPIO) be held LOW. If using the 20-/16-bit mode or using this
terminal as GPIO, then this terminal must be pulled low through a 2.2-k pulldown resistor (see Figure 5−1).
If unused, this terminal can be shorted to ground. (Note: If using the 20-/16-bit mode and only using the 16
MSBs, it is possible to short terminal 69 to GND, but the current for IOVDD will increase by 2 or 3 mA.)
After reset, the user must write the following I2C commands to the TVP5146:
STEP I2C SUBADDRESS I2C DATA
1 0xE8 0x02
2 0xE9 0x00
3 0xEA 0x80
4 0xE0 0x01
5 0xE8 0x60
6 0xE9 0x00
7 0xEA 0xB0
8 0xE0 0x01
9 0xE0 0x00
Afterward, the user programs the device as usual.
2.9 Adjusting External Syncs
The proper sequence to program the following external syncs is:
To set NTSC, PAL-M, NTSC 443, PAL60 (525-line modes):
Set the video standard to NTSC (register 02h)
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)
To set PAL, PAL-N, SECAM (625-line modes):
Set the video standard to PAL (register 02h)
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)
For autoswitch, set the video standard to autoswitch (register 02h)
2.10 Internal Control Registers
The TVP5146 decoder is initialized and controlled by a set of internal registers that define the operating parameters
of the entire decoder. Communication between the external controller and the TVP5146 decoder is through a
standard I2C host port interface, as described earlier. Table 2−10 shows the summary of these registers. Detailed
programming information for each register is described in the following sections. Additional registers are accessible
through an indirect procedure involving access to an internal 24-bit address wide VBUS. Table 2−11 shows the
summary of the VBUS registers.
NOTE: Do not write to reserved registers. Reserved bits in any defined register must be written
with 0s, unless otherwise noted.
2−23
Table 2−10. Register Summary
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
Input select 00h 00h R/W
AFE gain control 01h 0Fh R/W
Video standard 02h 00h R/W
Operation mode 03h 00h R/W
Autoswitch mask 04h 23h R/W
Color killer 05h 10h R/W
Luminance processing control 1 06h 00h R/W
Luminance processing control 2 07h 00h R/W
Luminance processing control 3 08h 02h R/W
Luminance brightness 09h 80h R/W
Luminance contrast 0Ah 80h R/W
Chrominance saturation 0Bh 80h R/W
Chroma hue 0Ch 00h R/W
Chrominance processing control 1 0Dh 00h R/W
Chrominance processing control 2 0Eh 0Eh R/W
Reserved 0Fh
Component Pr saturation 10h 80h R/W
Component Y contrast 11h 80h R/W
Component Pb saturation 12h 80h R/W
Reserved 13h
Component Y brightness 14h 80h R/W
Reserved 15h
AVID start pixel 16h–17h 055h R/W
AVID stop pixel 18h–19h 325h R/W
HSYNC start pixel 1Ah–1Bh 000h R/W
HSYNC stop pixel 1Ch–1Dh 040h R/W
VSYNC start line 1Eh–1Fh 004h R/W
VSYNC stop line 20h–21h 007h R/W
VBLK start line 22h–23h 001h R/W
VBLK stop line 24h–25h 015h R/W
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
2−24
Table 2−10. Registers Summary (Continued)
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
Reserved 26h–27h
Fast-switch control 28h CCh R/W
Reserved 29h
Fast-switch SCART delay 2Ah 00h R/W
Reserved 2Bh
SCART delay 2Ch 00h R/W
CTI delay 2Dh 00h R/W
CTI control 2Eh 00h R/W
Reserved 2Fh–30h
RTC 31h 05h R/W
Sync control 32h 00h R/W
Output formatter 1 33h 40h R/W
Output formatter 2 34h 00h R/W
Output formatter 3 35h FFh R/W
Output formatter 4 36h FFh R/W
Output formatter 5 37h FFh R/W
Output formatter 6 38h FFh R/W
Clear lost lock detect 39h 00h R/W
Status 1 3Ah R
Status 2 3Bh R
AGC gain status 3Ch–3Dh R
Reserved 3Eh
Video standard status 3Fh R
GPIO input 1 40h R
GPIO input 2 41h R
Vertical line count 42h–43h R
Reserved 44h–45h R
AFE coarse gain for CH1 46h 20h R/W
AFE coarse gain for CH2 47h 20h R/W
AFE coarse gain for CH3 48h 20h R/W
AFE coarse gain for CH4 49h 20h R/W
AFE fine gain for Pb_B 4Ah–4Bh 900h R/W
AFE fine gain for Y_G_Chroma 4Ch–4Dh 900h R/W
AFE fine gain for Pr_R 4Eh–4Fh 900h R/W
AFE fine gain for CVBS_Luma 50h–51h 900h R/W
Reserved 52h–6Fh
ROM version 70h R
Reserved 71h–73h
AGC white peak processing 74h 00h R/W
Reserved 75h–77h
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
2−25
Table 2−10. Registers Summary (Continued)
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
AGC increment speed 78h 05h R/W
AGC increment delay 79h 1Eh R/W
Reserved 7Ah–7Fh
Chip ID MSB 80h R
Chip ID LSB 81h R
Reserved 82h–B0h
VDP TTX filter 1 mask 1 B1h 00h R/W
VDP TTX filter 1 mask 2 B2h 00h R/W
VDP TTX filter 1 mask 3 B3h 00h R/W
VDP TTX filter 1 mask 4 B4h 00h R/W
VDP TTX filter 1 mask 5 B5h 00h R/W
VDP TTX filter 2 mask 1 B6h 00h R/W
VDP TTX filter 2 mask 2 B7h 00h R/W
VDP TTX filter 2 mask 3 B8h 00h R/W
VDP TTX filter 2 mask 4 B9h 00h R/W
VDP TTX filter 2 mask 5 BAh 00h R/W
VDP TTX filter control BBh 00h R/W
VDP FIFO word count BCh R
VDP FIFO interrupt threshold BDh 80h R/W
Reserved BEh
VDP FIFO reset BFh 00h R/W
VDP FIFO output control C0h 00h R/W
VDP line number interrupt C1h 00h R/W
VDP pixel alignment C2h–C3h 01Eh R/W
Reserved C4h–D5h
VDP line start D6h 06h R/W
VDP line stop D7h 1Bh R/W
VDP global line mode D8h FFh R/W
VDP full field enable D9h 00h R/W
VDP full field mode DAh FFh R/W
Reserved DBh–DFh
VBUS data access with no VBUS address
increment
E0h 00h R/W
VBUS data access with VBUS address increment E1h 00h R/W
FIFO read data E2h R
Reserved E3h–E7h
VBUS address access E8h–E9h 00 0000h R/W
Reserved EBh–EFh
Interrupt raw status 0 F0h
Interrupt raw status 1 F1h
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
2−26
Table 2−10. Registers Summary (Continued)
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
Interrupt status 0 F2h R/W
Interrupt status 1 F3h R/W
Interrupt mask 0 F4h 00h R/W
Interrupt mask 1 F5h 00h R/W
Interrupt clear 0 F6h 00h R/W
Interrupt clear 1 F7h 00h R/W
Reserved F8h–FFh
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
Table 2−11. VBUS Register Summary
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
Reserved 00 0000h–80 051Bh
VDP closed caption data 80 051Ch–80 051Fh R
VDP WSS data 80 0520h–80 0526h R
Reserved 80 0527h–80 052Bh
VDP VITC data 80 052Ch–80 0534h R
Reserved 80 0535h–80 053Fh
VDP V-Chip data 80 0540h–80 0543h R
Reserved 80 0544h–80 05FFh
VDP general line mode and line address 80 0600h–80 0611h 00h, FFh R/W
Reserved 80 0612h–80 06FFh
VDP VPS/Gemstar data 80 0700h–80 070Ch R
Reserved 80 070Dh–90 1903h
VDP FIFO read 90 1904h R
Reserved 90 1905h–B0 005Fh
Interrupt configuration B0 0060h 00h R/W
Reserved B0 0061h–FF FFFFh
NOTE: Writing any value to a reserved register may cause erroneous operation of the TVP5146 decoder.
It is recommended not to access any data to/from reserved registers.
um“: um: um czl :mcn
2−27
2.11 Register Definitions
2.11.1 Input Select Register
Subaddress 00h
Default 00h
7 6 5 4 3 2 1 0
Input select [7:0]
Table 2−12. Analog Channel and Video Mode Selection
MODE
INPUT(S) SELECTED
INPUT SELECT [7:0]
MODE
INPUT(S) SELECTED
7 6 5 4 3 2 1 0 HEX
CVBS VI_1_A (default) 0 0 0 0 0 0 0 0 00
VI_1_B 0 0 0 0 0 0 0 1 01
VI_1_C 0 0 0 0 0 0 1 0 02
VI_2_A 0 0 0 0 0 1 0 0 04
VI_2_B 0 0 0 0 0 1 0 1 05
VI_2_C 0 0 0 0 0 1 1 0 06
VI_3_A 0 0 0 0 1 0 0 0 08
VI_3_B 0 0 0 0 1 0 0 1 09
VI_3_C 0 0 0 0 1 0 1 0 0A
VI_4_A 0 0 0 0 1 1 0 0 0C
S-video VI_2_A(Y), VI_1_A(C) 0 1 0 0 0 1 0 0 44
VI_2_B(Y), VI_1_B(C) 0 1 0 0 0 1 0 1 45
VI_2_C(Y), VI_1_C(C) 0 1 0 0 0 1 1 0 46
VI_2_A(Y), VI_3_A(C) 0 1 0 1 0 1 0 0 54
VI_2_B(Y), VI_3_B(C) 0 1 0 1 0 1 0 1 55
VI_2_C(Y), VI_3_C(C) 0 1 0 1 0 1 1 0 56
VI_4_A(Y), VI_1_A(C) 0 1 0 0 1 1 0 0 4C
VI_4_A(Y), VI_1_B(C) 0 1 0 0 1 1 0 1 4D
VI_4_A(Y), VI_1_C(C) 0 1 0 0 1 1 1 0 4E
VI_4_A(Y), VI_3_A(C) 0 1 0 1 1 1 0 0 5C
VI_4_A(Y), VI_3_B(C) 0 1 0 1 1 1 0 1 5D
VI_4_A(Y), VI_3_C(C) 0 1 0 1 1 1 1 0 5E
RGB VI_1_A(B), VI_2_A(G), VI_3_A(R) 1 0 0 0 0 1 0 0 84
VI_1_B(B), VI_2_B(G), VI_3_B(R) 1 0 0 0 0 1 0 1 85
VI_1_C(B), VI_2_C(G), VI_3_C(R) 1 0 0 0 0 1 1 0 86
YPbPr VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr) 1 0 0 1 0 1 0 0 94
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr) 1 0 0 1 0 1 0 1 95
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr) 1 0 0 1 0 1 1 0 96
SCART VI_1_A(B), VI_2_A(G), VI_3_A(R), VI_4_A(CVBS) 1 1 0 0 1 1 0 0 CC
VI_1_B(B), VI_2_B(G), VI_3_B(R), VI_4_A(CVBS) 1 1 0 0 1 1 0 1 CD
VI_1_C(B), VI_2_C(G), VI_3_C(R), VI_4_A(CVBS) 1 1 0 0 1 1 1 0 CE
VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr), VI_4_A(CVBS) 1 1 0 1 1 1 0 0 DC
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr), VI_4_A(CVBS) 1 1 0 1 1 1 0 1 DD
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr), VI_4_A(CVBS) 1 1 0 1 1 1 1 0 DE
Ten input terminals can be configured to support composite, S-video, and component YPbPr/RGB or SCART as listed
in Table 2−12. Users must follow this table properly for S-video and component applications because only the terminal
configurations listed in Table 2−12 are supported.
CVBS and SrVideo Component Video
2−28
2.11.2 AFE Gain Control Register
Subaddress 01h
Default 0Fh
7 6 5 4 3 2 1 0
Reserved 1 1 AGC chroma AGC luma
Bit 3: 1 must be written to this bit.
Bit 2: 1 must be written to this bit.
AGC chroma: Controls automatic gain in the chroma/B/R/PbPr channel:
0 = Manual (if AGC luma is set to manual, AGC chroma is forced to be in manual)
1 = Enabled auto gain, applies a gain value acquired from the sync channel for S-video and component
mode. When AGC luma is set, this state is valid. (default)
AGC luma: Controls automatic gain in the embedded sync channel of CVBS, S-video, component video:
0 = Manual gain, AFE coarse and fine gain frozen to the previous gain value set by a AGC when this bit is set
to 0.
1 = Enabled auto gain applies only to the embedded sync channel (default)
These settings only affect the analog front-end (AFE). The brightness and contrast of component, CVBS are not
affected by these settings.
2.11.3 Video Standard Register
Subaddress 02h
Default 00h
7 6 5 4 3 2 1 0
Reserved Video standard [2:0]
Video standard [2:0]:
CVBS and S-Video Component Video
000 = Autoswitch mode (default) Autoswitch mode (default)
001 = (M, J) NTSC Component 525
010 = (B, D, G, H, I, N) PAL Component 625
011 = (M) PAL Reserved
100 = (Combination-N) PAL Reserved
101 = NTSC 4.43 Reserved
110 = SECAM Reserved
111 = PAL 60 Reserved
NOTE: PAL60 is not included in autoswitch mode.
With the autoswitch code running, the user can force the decoder to operate in a particular video standard mode by
writing the appropriate value into this register. Changing these bits causes the register settings to be reinitialized.
NOTE: Sampling rate (either square pixel or ITU-R BT.601) can be set by bit 7 (sampling rate)
in the output formatter 1 register at I2C subaddress 33h (see Section 2.11.35).
2−29
2.11.4 Operation Mode Register
Subaddress 03h
Default 00h
7 6 5 4 3 2 1 0
Reserved Power save
Power save:
0 = Normal operation (default)
1 = Power-save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I2C
interface is active and all current operating settings are preserved.
2.11.5 Autoswitch Mask Register
Subaddress 04h
Default 23h
7 6 5 4 3 2 1 0
Reserved SECAM NTSC 4.43 (Nc) PAL (M) PAL PAL (M, J) NTSC
Autoswitch mode mask: Limits the video formats between which autoswitch is possible.
SECAM:
0 = Autoswitch does not include SECAM
1 = Autoswitch includes SECAM (default)
NTSC 4.43:
0 = Autoswitch does not include NTSC 4.43 (default)
1 = Autoswitch includes NTSC 4.43
(Nc) PAL:
0 = Autoswitch does not include (Nc) PAL (default)
1 = Autoswitch includes (Nc) PAL
(M) PAL:
0 = Autoswitch does not include (M) PAL (default)
1 = Autoswitch includes (M) PAL
PAL:
0 = Reserved
1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)
(M, J ) NTSC:
0 = Reserved
1 = Autoswitch includes (M, J) NTSC (default)
NOTE: Bits 1 and 0 must always be 1.
2−30
2.11.6 Color Killer Register
Subaddress 05h
Default 10h
7 6 5 4 3 2 1 0
Reserved Automatic color killer Color killer threshold [4:0]
Automatic color killer:
00 = Automatic mode (default)
01 = Reserved
10 = Color killer enabled, the C terminals are forced to a zero color state.
11 = Color killer disabled
Color killer threshold [4:0]:
1 1111 = 31 (maximum)
1 0000 = 16 (default)
0 0000 = 0 (minimum)
2.11.7 Luminance Processing Control 1 Register
Subaddress 06h
Default 00h
7 6 5 4 3 2 1 0
Reserved Pedestal not present Reserved VBI raw Luminance signal delay [3:0]
Pedestal not present:
0 = 7.5 IRE pedestal is present on the analog video input signal (default)
1 = Pedestal is not present on the analog video input signal
VBI raw:
0 = Disabled (default)
1 = Enabled
During the duration of the vertical blanking as defined by the VBLK start and stop line registers at subaddresses 22h
through 25h (see Sections 2.11.26 and 2.11.27), the chroma samples are replaced by luma samples. This feature
can be used to support VBI processing performed by an external device during the VBI. In order to use this bit, the
output format must be 10-bit ITU-R BT.656 mode.
Luminance signal delay [3:0]: Luminance signal delays with respect to the chroma signal in 1× pixel clock
increments.
0111 = Reserved
0110 = 6-pixel delay
0001 = 1-pixel delay
0000 = 0 delay (default)
1111 = –1-pixel delay
1000 = –8-pixel delay
Filler se‘ect [1 :0} NTSC ITUVR BT.601 NTSC Square uixe‘ PAL ITUVR BT.601 PAL Square oixe‘
2−31
2.11.8 Luminance Processing Control 2 Register
Subaddress 07h
Default 00h
7 6 5 4 3 2 1 0
Luma filter select [1:0] Reserved Peaking gain (sharpness) [1:0] Reserved
Luma filter selected [1:0]:
00 = Luminance adaptive comb enabled (default on CVBS)
01 = Luminance adaptive comb disabled (trap filter selected)
10 = Luma comb/trap filter bypassed (default on S-video, component mode, and SECAM)
11 = Reserved
Peaking gain (sharpness) [1:0]:
00 = 0 (default)
01 = 0.5
10 = 1
11 = 2
2.11.9 Luminance Processing Control 3 Register
Subaddress 08h
Default 02h
7 6 5 4 3 2 1 0
Reserved Trap filter select [1:0]
Trap filter select [1:0] selects one of the four trap filters to produce the luminance signal by removing the chrominance
signal from the composite video signal. The stopband of the chroma trap filter is centered at the chroma subcarrier
frequency with the stopband bandwidth controlled by the two control bits.
Trap filter stopband bandwidth (MHz):
Filter select [1:0] NTSC ITU-R BT.601 NTSC Square pixel PAL ITU-R BT.601 PAL Square pixel
00 = 1.2129 1.1026 1.2129 1.3252
01 = 0.8701 0.7910 0.8701 0.9507
10 = (default) 0.7183 0.6712 0.7383 0.8066
11 = 0.5010 0.4554 0.5010 0.5474
2.11.10 Luminance Brightness Register
Subaddress 09h
Default 80h
7 6 5 4 3 2 1 0
Brightness [7:0]
Brightness [7:0]: This register works for CVBS and S-video luminance.
1111 1111 = 255 (bright)
1000 0000 = 128 (default)
0000 0000 = 0 (dark)
2−32
2.11.11 Luminance Contrast Register
Subaddress 0Ah
Default 80h
7 6 5 4 3 2 1 0
Contrast [7:0]
Contrast [7:0]: This register works for CVBS and S-video luminance.
1111 1111 = 255 (maximum contrast)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum contrast)
2.11.12 Chrominance Saturation Register
Subaddress 0Bh
Default 80h
7 6 5 4 3 2 1 0
Saturation [7:0]
Saturation [7:0]: This register works for CVBS and S-video chrominance.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (no color)
2.11.13 Chroma Hue Register
Subaddress 0Ch
Default 00h
7 6 5 4 3 2 1 0
Hue [7:0]
Hue [7:0] (does not apply to a component video): This register works for CVBS and S-video chrominance.
0111 1111 = +180 degrees
0000 0000 = 0 degrees (default)
1000 0000 = –180 degrees
2−33
2.11.14 Chrominance Processing Control 1 Register
Subaddress 0Dh
Default 00h
7 6 5 4 3 2 1 0
Reserved Color PLL reset Chrominance adaptive
comb enable Reserved Automatic color gain control [1:0]
Color PLL reset:
0 = Color subcarrier PLL not reset (default)
1 = Color subcarrier PLL reset
Chrominance adaptive comb enable: This bit is effective on composite video only.
0 = Enabled (default)
1 = Disabled
Automatic color gain control (ACGC) [1:0]:
00 = ACGC enabled (default)
01 = Reserved
10 = ACGC disabled, ACGC set to the nominal value
11 = ACGC frozen to the previous set value
2.11.15 Chrominance Processing Control 2 Register
Subaddress 0Eh
Default 0Eh
7 6 5 4 3 2 1 0
Reserved PAL compensation WCF Chrominance filter select [1:0]
PAL compensation:
0 = Disabled
1 = Enabled (default)
WCF: Wideband chroma LPF filter
0 = Disabled
1 = Enabled (default)
Chrominance filter select [1:0]:
00 = Disabled
01 = Notch 1
10 = Notch 2 (default)
11 = Notch 3
See Figure 2−8 through Figure 2−11 for characteristics.
2.11.16 Component Pr Saturation Register
Subaddress 10h
Default 80h
7 6 5 4 3 2 1 0
Pr saturation [7:0]
Pr saturation [7:0]: This register works only with YPbPr component video. For RGB video, user must use the AFE
gain registers.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum)
2−34
2.11.17 Component Y Contrast Register
Subaddress 11h
Default 80h
7 6 5 4 3 2 1 0
Y contrast [7:0]
Y contrast [7:0]: This register works only with YPbPr component video. For RGB video, user must use the AFE gain
registers.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum)
2.11.18 Component Pb Saturation Register
Subaddress 12h
Default 80h
7 6 5 4 3 2 1 0
Pb saturation [7:0]
Pb saturation [7:0]: This register works only with YPbPr component video. For RGB video, user must use the AFE
gain registers.
1111 1111 = 255 (maximum)
1000 0000 =128 (default)
0000 0000 = 0 (minimum)
2.11.19 Component Y Brightness Register
Subaddress 14h
Default 80h
7 6 5 4 3 2 1 0
Y brightness [7:0]
Y brightness [7:0]: This register works only with YPbPr component video.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum)
NTSC 601 NTSC Sgg PAL 601 PAL 8gp NTSC 601 NTSC Sgg PAL 601 PAL 8gp
2−35
2.11.20 AVID Start Pixel Register
Subaddress 16h–17h
Default 055h
Subaddress 7 6 5 4 3 2 1 0
16h AVID start [7:0]
17h Reserved AVID active Reserved AVID start [9:8]
AVID active:
0 = AVID out active in VBLK (default)
1 = AVID out inactive in VBLK
AVID start [9:0]: AVID start pixel number, this is a absolute pixel location from HSYNC start pixel 0.
NTSC 601 NTSC Sqp PAL 601 PAL Sqp
default 85 (55h) 86 (56h) 88 (58h) 103 (67h)
The TVP5146 decoder updates the AVID start only when the AVID start MSB byte is written to. If the user changes
these registers, then the TVP5146 decoder retains values in different modes until this decoder resets. The AVID start
pixel register also controls the position of the SAV code.
2.11.21 AVID Stop Pixel Register
Subaddress 18h–19h
Default 325h
Subaddress 7 6 5 4 3 2 1 0
18h AVID stop [7:0]
19h Reserved AVID stop [9:8]
AVID stop [9:0]: AVID stop pixel number. The number of pixels of active video must be an even number. This is an
absolute pixel location from HSYNC start pixel 0.
NTSC 601 NTSC Sqp PAL 601 PAL Sqp
default 805 (325h) 726 (2D6h) 808 (328h) 696 (2B8h)
The TVP5146 decoder updates the AVID stop only when the AVID stop MSB byte is written to. If the user changes
these registers, then the TVP5146 decoder retains values in different modes until this decoder resets. The AVID start
pixel register also controls the position of the EAV code.
2.11.22 HSYNC Start Pixel Register
Subaddress 1Ah–1Bh
Default 000h
Default (000h)
Subaddress 7 6 5 4 3 2 1 0
1Ah HSYNC start [7:0]
1Bh Reserved HSYNC start [9:8]
HSYNC start pixel [9:0]: This is an absolute pixel location from HSYNC start pixel 0.
The TVP5146 decoder updates the HSYNC start only when the HSYNC start MSB byte is written to. If the user
changes these registers, then the TVP5146 decoder retains values in different modes until this decoder resets.
2−36
2.11.23 HSYNC Stop Pixel Register
Subaddress 1Ch–1Dh
Default 040h
Subaddress 7 6 5 4 3 2 1 0
1Ch HSYNC stop [7:0]
1Dh Reserved HSYNC stop [9:8]
HSYNC stop [9:0]: This is an absolute pixel location from HSYNC start pixel 0.
The TVP5146 decoder updates the HSYNC stop only when the HSYNC Stop MSB byte is written to. If the user
changes these registers, then the TVP5146 decoder retains values in different modes until this decoder resets.
2.11.24 VSYNC Start Line Register
Subaddress 1Eh–1Fh
Default 004h
Subaddress 7 6 5 4 3 2 1 0
1Eh VSYNC start [7:0]
1Fh Reserved VSYNC start [9:8]
VSYNC start [9:0]: This is an absolute line number. The TVP5146 decoder updates the VSYNC start only when the
VSYNC start MSB byte is written to. If the user changes these registers, then the TVP5146 decoder retains values
in different modes until this decoder resets.
NTSC: default 004h, PAL: default 001h
2.11.25 VSYNC Stop Line Register
Subaddress 20h–21h
Default 007h
Subaddress 7 6 5 4 3 2 1 0
20h VSYNC stop [7:0]
21h Reserved VSYNC stop [9:8]
VSYNC stop [9:0]: This is an absolute line number. The TVP5146 decoder updates the VSYNC stop only when the
VSYNC stop MSB byte is written to. If the user changes these registers, the TVP5146 decoder retains values in
different modes until this decoder resets.
NTSC: default 007h, PAL: default 004h
2.11.26 VBLK Start Line Register
Subaddress 22h–23h
Default 001h
Subaddress 7 6 5 4 3 2 1 0
22h VBLK start [7:0]
23h Reserved VBLK start [9:8]
VBLK start [9:0]: This is an absolute line number. The TVP5146 decoder updates the VBLK start line only when the
VBLK start MSB byte is written to. If the user changes these registers, the TVP5146 decoder retains values in different
modes until this decoder resets.
NTSC: default 001h, PAL: default 623 (26Fh)
2−37
2.11.27 VBLK Stop Line Register
Subaddress 24h–25h
Default 015h
Subaddress 7 6 5 4 3 2 1 0
24h VBLK stop [7:0]
25h Reserved VBLK stop [9:8]
VBLK stop [9:0]: This is an absolute line number. The TVP5146 decoder updates the VBLK stop only when the VBLK
stop MSB byte is written to. If the user changes these registers, then the TVP5146 decoder retains values in different
modes until this decoder resets.
NTSC: default 21 (15h), PAL: default 23 (17h)
2.11.28 Fast-Switch Control Register
Subaddress 28h
Default CCh
7 6 5 4 3 2 1 0
Mode [2:0] Reserved Reserved FSS edge Reserved Polarity FSS
Mode [2:0]: Select fast-switch modes
000 = CVBS $ SCART
001 = Reserved
010 = Reserved
011 = Reserved
100 = Reserved
101 = Reserved
110 = Composite only (default)
111 = Component only
FSS edge: FSS is sampled at the rising or falling edge of the sampling clock
0 = Rising edge
1 = Falling edge (default)
Polarity FSS:
0 = 0: YCbCr/RGB 1: CVBS (4A) (default)
1 = 0: CVBS (4A) 1: YCbCr/RGB
2.11.29 Fast-Switch SCART Delay Register
Subaddress 2Ah
Default 00h
7 6 5 4 3 2 1 0
Reserved FSS delay [4:0]
FSS delay [4:0]: Adjusts the delay between the FSS and component RGB/YPbPr
0 1111 = 15 pixel delay
0 0001 = 1 pixel delay
0 0000 = 0 delay (default)
1 1111 = –1 pixel delay
1 0000 = –16 pixel delay
2−38
2.11.30 SCART Delay Register
Subaddress 2Ch
Default 00h
7 6 5 4 3 2 1 0
Reserved SCART delay [4:0]
SCART delay [4:0]: Adjusts delay between the CVBS and component (RGB) video
0 1111 = 15 pixel delay
0 0001 = 1 pixel delay
0 0000 = 0 delay (default)
1 1111 =1 pixel delay
1 0000 = –16 pixel delay
2.11.31 CTI Delay Register
Subaddress 2Dh
Default 00h
7 6 5 4 3 2 1 0
Reserved CTI delay [2:0]
CTI delay [2:0]: Sets the delay of the Y channel with respect to Cb/Cr in the CTI block
011 = 3 pixel delay
001 = 1 pixel delay
000 = 0 delay (default)
111 = –1 pixel delay
100 = –4 pixel delay
2.11.32 CTI Control Register
Subaddress 2Eh
Default 00h
7 6 5 4 3 2 1 0
CTI coring [3:0] CTI gain [3:0]
CTI coring [3:0]: 4-bit CTI coring limit control value, unsigned linear control range from 0 to ±60, step size = 4
1111 = ±60
0001 = ±4
0000 = 0 (default)
CTI gain [3:0]: 4-bit CTI gain control values, unsigned linear control range from 0 to 15/16, step size = 1/16
1111 = 15/16
0001 = 1/16
0000 = 0 disabled (default)
2−39
2.11.33 RTC Register
Subaddress 31h
Default 05h
7 6 5 4 3 2 1 0
Reserved Genlock [2:0]
Genlock [2:0]:
000 = Reserved
001 = Reserved
010 = Reserved
011 = Reserved
100 = Reserved
101 = RTC mode
110 = Reserved
111 = Reserved
2.11.34 Sync Control Register
Subaddress 32h
Default 00h
7 6 5 4 3 2 1 0
Reserved Polarity FID Polarity VS Polarity HS VS/VBLK HS/CS
Polarity FID: determines polarity of FID terminal
0 = First field high, second field low (default)
1 = First field low, second field high
Polarity VS: determines polarity of VS terminal
0 = Active low (default)
1 = Active high
Polarity HS: determines polarity of HS terminal
0 = Active low (default)
1 = Active high
VS/VBLK:
0 = VS terminal outputs vertical sync (default)
1 = VS terminal outputs vertical blank
HS/CS:
0 = HS terminal outputs horizontal sync (default)
1 = HS terminal outputs composite sync
2−40
2.11.35 Output Formatter 1 Register
Subaddress 33h
Default 40h
7 6 5 4 3 2 1 0
Sampling rate YCbCr code range CbCr code Reserved Output format [2:0]
Sampling rate (changing this bit causes the register settings to be reinitialized):
0 = ITU-R BT.601 sampling rate (default)
1 = Square pixel sampling rate
YCbCr code range:
0 = ITU-R BT.601 coding range (Y ranges from 64 to 940. Cb and Cr range from 64 to 960.)
1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016) (default)
CbCr code:
0 = Offset binary code (2s complement + 512) (default)
1 = Straight binary code (2s complement)
Output format [2:0]:
000 = 10-bit 4:2:2 (2× pixel rate) with embedded syncs (ITU-R BT.656) (default)
001 = 20-bit 4:2:2 (pixel rate) with separate syncs
010 = Reserved
011 = 10-bit 4:2:2 with separate syncs
100–111= Reserved
NOTE: 10-bit mode is also used for the raw VBI output mode when bit 4 (VBI raw) in the
luminance processing control 1 register at subaddress 06h is set (see Section 2.11.7).
2.11.36 Output Formatter 2 Register
Subaddress 34h
Default 00h
7 6 5 4 3 2 1 0
Reserved Y[9:0] enable Reserved CLK polarity Clock enable
Y[9:0] enable: Y[9:0] and C[9:0] output enable
0 = Y[9:0] and C[9:0] high impedance (default)
1 = Y [9:0] and C[9:0] active
CLK polarity:
0 = Data clocked out on the falling edge of DATACLK (default)
1 = Data clocked out on the rising edge of DATACLK
Clock enable:
0 = DATACLK outputs are high-impedance (default).
1 = DATACLK outputs are enabled.
2−41
2.11.37 Output Formatter 3 Register
Subaddress 35h
Default FFh
7 6 5 4 3 2 1 0
FSS [1:0] AVID [1:0] GLCO [1:0] FID [1:0]
FSS [1:0]: FSS terminal function select
00 = FSS is logic 0 output.
01 = FSS is logic 1 output.
10 = FSS is fast-switch input for SCART support.
11 = FSS is logic input (default).
AVID [1:0]: AVID terminal function select
00 = AVID is logic 0 output.
01 = AVID is logic 1 output.
10 = AVID is active video indicator output.
11 = AVID is logic input (default).
GLCO [1:0]: GLCO terminal function select
00 = GLCO is logic 0 output.
01 = GLCO is logic 1 output.
10 = GCLO is genlock output.
11 = GCLO is logic input (default).
FID [1:0]: FID terminal function select
00 = FID is logic 0 output.
01 = FID is logic 1 output.
10 = FID is FID output.
11 = FID is logic input (default).
2−42
2.11.38 Output Formatter 4 Register
Subaddress 36h
Default FFh
7 6 5 4 3 2 1 0
VS/VBLK [1:0] HS/CS [1:0] C_1 [1:0] C_0 [1:0]
VS/VBLK [1:0]: VS terminal function select
00 = VS is logic 0 output.
01 = VS is logic 1 output.
10 = VS/VBLK is vertical sync or vertical blank output corresponding to bit 1 (VS/VBLK) in the sync control
register at subaddress 32h (see Section 2.11.34).
11 = VS is logic input (default).
HS/CS [1:0]: HS terminal function select
00 = HS is logic 0 output.
01 = HS is logic 1 output.
10 = HS/CS is horizontal sync or composite sync output corresponding to bit 0 (HS/CS) in the sync control
register at subaddress 32h (see Section 2.11.34).
11 = HS is logic input (default).
C_1 [1:0]: C_1 terminal function select
00 = C_1 is logic 0 output.
01 = C_1 is logic 1 output.
10 = Reserved
11 = C_1 is logic input (default).
C_0 [1:0]: C_0 terminal function select
00 = C_0 is logic 0 output.
01 = C_0 is logic 1 output.
10 = Reserved
11 = C_0 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2−43
2.11.39 Output Formatter 5 Register
Subaddress 37h
Default FFh
7 6 5 4 3 2 1 0
C_5 [1:0] C_4 [1:0] C_3 [1:0] C_2 [1:0]
C_5 [1:0]: C_5 terminal function select
00 = C_5 is logic 0 output.
01 = C_5 is logic 1 output.
10 = Reserved
11 = C_5 is logic input (default).
C_4 [1:0]: C_4 terminal function select
00 = C_4 is logic 0 output.
01 = C_4 is logic 1 output.
10 = Reserved
11 = C_4 is logic input (default).
C_3 [1:0]: C_3 terminal function select
00 = C_3 is logic 0 output.
01 = C_3 is logic 1 output.
10 = Reserved
11 = C_3 is logic input (default)
C_2 [1:0]: C_2 terminal function select
00 = C_2 is logic 0 output.
01 = C_2 is logic 1 output.
10 = Reserved
11 = C_2 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2−44
2.11.40 Output Formatter 6 Register
Subaddress 38h
Default FFh
7 6 5 4 3 2 1 0
C_9 [1:0] C_8 [1:0] C_7 [1:0] C_6 [1:0]
C_9 [1:0]: C_9 terminal function select
00 = C_9 is logic 0 output.
01 = C_9 is logic 1 output.
10 = Reserved
11 = C_9 is logic input (default).
C_8 [1:0]: C_8 terminal function select
00 = C_8 is logic 0 output.
01 = C_8 is logic 1 output.
10 = Reserved
11 = C_8 is logic input (default).
C_7 [1:0]: C_7 terminal function select
00 = C_7 is logic 0 output.
01 = C_7 is logic 1 output.
10 = Reserved
11 = C_7 is logic input (default).
C_6 [1:0]: C_6 terminal function select
00 = C_6 is logic 0 output.
01 = C_6 is logic 1 output.
10 = Reserved
11 = C_6 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2.11.41 Clear Lost Lock Detect Register
Subaddress 39h
Default 00h
7 6 5 4 3 2 1 0
Reserved Clear lost lock detect
Clear lost lock detect: Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah (see Section 2.11.42).
0 = No effect (default)
1 = Clears bit 4 in the status 1 register
2−45
2.11.42 Status 1 Register
Subaddress 3Ah
Read only
7 6 5 4 3 2 1 0
Peak white
detect status
Line-alternating
status
Field rate
status
Lost lock
detect
Color subcarrier
lock status
Vertical sync
lock status
Horizontal sync
lock status
TV/VCR
status
Peak white detect status:
0 = Peak white is not detected.
1 = Peak white is detected.
Line-alternating status:
0 = Nonline-alternating
1 = Line-alternating
Field rate status:
0 = 60 Hz
1 = 50 Hz
Lost lock detect:
0 = No lost lock since this bit was cleared
1 = Lost lock since this bit was cleared.
Color subcarrier lock status:
0 = Color subcarrier is not locked.
1 = Color subcarrier is locked.
Vertical sync lock status:
0 = Vertical sync is not locked.
1 = Vertical sync is locked.
Horizontal sync lock status:
0 = Horizontal sync is not locked.
1 = Horizontal sync is locked.
TV/VCR status:
0 = TV
1 = VCR
2−46
2.11.43 Status 2 Register
Subaddress 3Bh
Read only
7 6 5 4 3 2 1 0
Reserved Weak signal detection PAL switch polarity Field sequence status Reserved Macrovision detection [2:0]
Weak signal detection:
0 = No weak signal
1 = Weak signal mode
PAL switch polarity of first line of odd field:
0 = PAL switch is zero.
1 = PAL switch is one.
Field sequence status:
0 = Even field
1 = Odd field
Macrovision detection [2:0]:
000 = No copy protection
001 = AGC pulses/pseudo syncs present (type 1)
010 = 2-line colorstripe only present
011 = AGC pulses/pseudo syncs and 2-line colorstripe present (type 2)
100 = Reserved
101 = Reserved
110 = 4-line colorstripe only present
111 = AGC pulses/pseudo syncs and 4-line colorstripe present (type 3)
2.11.44 AGC Gain Status Register
Subaddress 3Ch–3Dh
Read only
Subaddress 7 6 5 4 3 2 1 0
3Ch Fine gain [7:0]
3Dh Coarse gain [3:0] Fine gain [11:8]
Fine gain [11:0]: This register provides the fine gain value of sync channel. See FGAIN 1 [11:0] in the AFE fine gain
for Pb_B register at subaddress 4Ah–4Bh (see Section 2.11.53).
1111 1111 1111 = 1.9995
1000 0000 0000 = 1
0010 0000 0000 = 0.5
Coarse gain [3:0]: This register provides the coarse gain value of sync channel. See CGAIN 1 [3:0] in the AFE coarse
gain for CH1 register at subaddress 46h (see Section 2.11.49).
1111 = 2
0101 = 1
0000 = 0.5
These AGC gain status registers are updated automatically by the TVP5146 decoder with AGC on. In manual gain
control mode these register values are not updated by the TVP5146 decoder.
CVBS and Srvideo Comgonem video
2−47
2.11.45 Video Standard Status Register
Subaddress 3Fh
Read only
7 6 5 4 3 2 1 0
Autoswitch Reserved Video standard [2:0]
Autoswitch mode:
0 = Stand-alone (forced video standard) mode
1 = Autoswitch mode
Video standard [2:0]:
CVBS and S-video Component video
000 = Reserved Reserved
001 = (M, J) NTSC Component 525
010 = (B, D, G, H, I, N) PAL Component 625
011 = (M) PAL Reserved
100 = (Combination-N) PAL Reserved
101 = NTSC 4.43 Reserved
110 = SECAM Reserved
111 = PAL 60 Reserved
This register contains information about the detected video standard that the decoder is currently operating. When
autoswitch code is running, this register must be tested to determine which video standard has been detected.
2.11.46 GPIO Input 1 Register
Subaddress 40h
Read only
7 6 5 4 3 2 1 0
C_7 C_6 C_5 C_4 C_3 C_2 C_1 C_0
C_x input status:
0 = Input is a low.
1 = Input is a high.
These status bits are only valid when terminals are used as inputs and their states updated at every line.
2−48
2.11.47 GPIO Input 2 Register
Subaddress 41h
Read only
7 6 5 4 3 2 1 0
FSS AVID GLCO VS HS FID C_9 C_8
FSS input terminal status:
0 = Input is a low.
1 = Input is a high.
AVID input terminal status:
0 = Input is a low.
1 = Input is a high.
GLCO input terminal status:
0 = Input is a low
1 = Input is a high.
VS input terminal status:
0 = Input is a low.
1 = Input is a high.
HS input status:
0 = Input is a low.
1 = Input is a high.
FID input status:
0 = Input is a low.
1 = Input is a high.
C_x input status:
0 = Input is a low.
1 = Input is a high.
These status bits are only valid when terminals are used as inputs and their states updated at every line.
2.11.48 Vertical Line Count Register
Subaddress 42h–43h
Read only
Subaddress 7 6 5 4 3 2 1 0
42h V_CNT[7:0]
43h Reserved V_CNT[9:8]
V_CNT[9:0] represents the detected total number of lines from the previous frame.
2−49
2.11.49 AFE Coarse Gain for CH 1 Register
Subaddress 46h
Default 20h
7 6 5 4 3 2 1 0
CGAIN 1 [3:0] Reserved
CGAIN 1 [3:0]: Coarse_Gain = 0.5 + (CGAIN 1)/10, where 0 CGAIN 1 15
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2.11.50 AFE Coarse Gain for CH 2 Register
Subaddress 47h
Default 20h
7 6 5 4 3 2 1 0
CGAIN 2 [3:0] Reserved
CGAIN 2 [3:0]: Coarse_Gain = 0.5 + (CGAIN 2)/10, where 0 CGAIN 2 15
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2−50
2.11.51 AFE Coarse Gain for CH 3 Register
Subaddress 48h
Default 20h
7 6 5 4 3 2 1 0
CGAIN 3 [3:0] Reserved
CGAIN 3 [3:0]: Coarse_Gain = 0.5 + (CGAIN 3)/10, where 0 CGAIN 3 15
This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2.11.52 AFE Coarse Gain for CH 4 Register
Subaddress 49h
Default 20h
7 6 5 4 3 2 1 0
CGAIN 4 [3:0] Reserved
CGAIN 4 [3:0]: Coarse_Gain = 0.5 + (CGAIN 4)/10, where 0 CGAIN 4 15
This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2−51
2.11.53 AFE Fine Gain for Pb_B Register
Subaddress 4Ah–4Bh
Default 900h
Subaddress 7 6 5 4 3 2 1 0
4Ah FGAIN 1 [7:0]
4Bh Reserved FGAIN 1 [11:8]
FGAIN 1 [11:0]: This fine gain applies to component Pb/B.
Fine_Gain = (1/2048) * FGAIN 1, where 0 FGAIN 1 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.54 AFE Fine Gain for Y_G_Chroma Register
Subaddress 4Ch–4Dh
Default 900h
Subaddress 7 6 5 4 3 2 1 0
4Ch FGAIN 2 [7:0]
4Dh Reserved FGAIN 2 [11:8]
FGAIN 2 [11:0]: This gain applies to component Y/G channel or S-video chroma.
Fine_Gain = (1/2048) * FGAIN 2, where 0 FGAIN 2 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2−52
2.11.55 AFE Fine Gain for R_Pr Register
Subaddress 4Eh–4Fh
Default 900h
Subaddress 7 6 5 4 3 2 1 0
4Eh FGAIN 3 [7:0]
4Fh Reserved FGAIN 3 [11:8]
FGAIN 3 [11:0]: This fine gain applies to component Pb/B.
Fine_Gain = (1/2048) * FGAIN 3, where 0 FGAIN 3 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.56 AFE Fine Gain for CVBS_Luma Register
Subaddress 50h–51h
Default 900h
Subaddress 7 6 5 4 3 2 1 0
50h FGAIN 4 [7:0]
51h Reserved FGAIN 4 [11:8]
FGAIN 4 [11:0]: This fine gain applies to CVBS or S-video luma.
Fine_Gain = (1/2048) * FGAIN 4, where 0 FGAIN 4 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.57 ROM Version Register
Subaddress 70h
Read only
7 6 5 4 3 2 1 0
ROM version [7:0]
ROM Version [7:0]: ROM revision number
2−53
2.11.58 AGC White Peak Processing Register
Subaddress 74h
Default 00h
7 6 5 4 3 2 1 0
Luma peak A Reserved Color burst A Sync height A Luma peak B Composite peak Color burst B Sync height B
Luma peak A: Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC
algorithm.
0 = Enabled (default)
1 = Disabled
Color burst A: Use of the color burst amplitude as a video amplitude reference for the back-end.
NOTE: Not available for SECAM, component, and B/W video sources.
0 = Enabled (default)
1 = Disabled
Sync height A: Use of the sync height as a video amplitude reference for the back-end feed-forward type AGC
algorithm.
0 = Enabled (default)
1 = Disabled
Luma peak B: Use of the luma peak as a video amplitude reference for the front-end feedback type AGC algorithm.
0 = Enabled (default)
1 = Disabled
Composite peak: Use of the composite peak as a video amplitude reference for the front-end feedback type AGC
algorithm.
NOTE: Required for CVBS and SCART (with color burst) video sources.
0 = Enabled (default)
1 = Disabled
Color burst B: Use of the color burst amplitude as a video amplitude reference for the front-end feedback type AGC
algorithm.
NOTE: Not available for SECAM, component, and B/W video sources.
0 = Enabled (default)
1 = Disabled
Sync height B: Use of the sync height as a video amplitude reference for the front-end feedback type AGC algorithm.
0 = Enabled (default)
1 = Disabled
NOTE: If all 4 bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected),
then the front-end analog and digital gains are automatically set to nominal values of 2 and
2304, respectively.
If all 4 bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then
the back-end gain is set automatically to unity.
If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%,
then the back-end scale factor attempts to increase the contrast in the back end to restore the video amplitude to
100%.
2−54
2.11.59 AGC Increment Speed Register
Subaddress 78h
Default 06h
7 6 5 4 3 2 1 0
Reserved AGC increment speed [3:0]
AGC increment speed: Adjusts gain increment speed.
111 = 7 (slowest)
110 = 6 (default)
L
000 = 0 (fastest)
2.11.60 AGC Increment Delay Register
Subaddress 79h
Default 1Eh
7 6 5 4 3 2 1 0
AGC increment delay [7:0]
AGC increment delay: Number of frames to delay gain increments
1111 1111 = 255
L
0001 1110 = 30 (default)
L
0000 0000 = 0
2.11.61 Chip ID MSB Register
Subaddress 80h
Read only
7 6 5 4 3 2 1 0
Chip ID MSB [7:0]
Chip ID MSB [7:0]: This register identifies the MSB of the device ID. Value = 51h
2.11.62 Chip ID LSB Register
Subaddress 81h
Read only
7 6 5 4 3 2 1 0
Chip ID LSB [7:0]
Chip ID LSB [7:0]: This register identifies the LSB of the device ID. Value = 46h
2−55
2.11.63 VDP TTX Filter And Mask Registers
Subaddress B1h B2h B3h B4h B5h B6h B7h B8h B9h BAh
Default 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
Subaddress 7 6 5 4 3 2 1 0
B1h Filter 1 mask 1 Filter 1 pattern 1
B2h Filter 1 mask 2 Filter 1 pattern 2
B3h Filter 1 mask 3 Filter 1 pattern 3
B4h Filter 1 mask 4 Filter 1 pattern 4
B5h Filter 1 mask 5 Filter 1 pattern 5
B6h Filter 2 mask 1 Filter 2 pattern 1
B7h Filter 2 mask 2 Filter 2 pattern 2
B8h Filter 2 mask 3 Filter 2 pattern 3
B9h Filter 2 mask 4 Filter 2 pattern 4
BAh Filter 2 mask 5 Filter 2 pattern 5
For an NABTS system, the packet prefix consists of five bytes. Each byte contains 4 data bits (D[3:0]) interlaced with
4 Hamming protection bits (H[3:0]):
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
D3 H3 D2 H2 D1 H1 D0 H0
Only data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern bits P[3:0]
and mask bits M[3:0] (see Figure 2−27). The filter ignores the Hamming protection bits.
For WST system (PAL or NTSC), the packet prefix consists of two bytes. The two bytes contain three bits of magazine
number (M[2:0]) and five bits of row address (R[4:0]), interlaced with eight Hamming protection bits H[7:0]:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
R0 H3 M2 H2 M1 H1 M0 H0
R4 H7 R3 H6 R2 H5 R1 H4
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB of mask
1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data bit on the
transaction. If these match, then a true result is returned. A 0 in a mask bit means that the filter module must ignore
that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter matches all patterns returning
a true result (default 00h).
2−56
2.11.64 VDP TTX Filter Control Register
Subaddress BBh
Default 00h
7 6 5 4 3 2 1 0
Reserved Filter logic [1:0] Mode TTX filter 2 enable TTX filter 1 enable
Filter logic [1:0]: Allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:
00 = NOR (default)
01 = NAND
10 = OR
11 = AND
Mode: Indicates which teletext mode is in use.
0 = Teletext filter applies to 2 header bytes (default)
1 = Teletext filter applies to 5 header bytes
TTX filter 2 enable: Provides for enabling the teletext filter function within the VDP.
0 = Disabled (default)
1 = Enabled
TTX filter 1 enable: Provides for enabling the teletext filter function within the VDP.
0 = Disabled (default)
1 = Enabled
If the filter matches or if the filter mask is all 0s, then a true result is returned.
mm mm ‘ ‘ ‘ 1M1[1]7 1mm] ”"01ij * 1M1[D]* NIBBLE1 D2[3:0] fl 1P2[3:0] 4H ‘ ‘ L777, 1' ‘ NIBBLE2 IM2[3:D]4H_7777 \ mum] 4U”” J Filter I 7 1P3[Ci:0]4L NIBBLECi L \ 777777777777 mm :0] 4T; 1 \ \ 1P4[3:0] 4h NIBBLE 4 ‘ IM4[3:D] fiiiii D5[3:0]r J—I' ’ 1P5[3:0] 7 2P1..2P5 i‘ FIL 2M1..2M5 4‘ Filler Logic PASS
2−57
1P1[3]
1M1[0]
1M1[1]
1M1[2]
1M1[3]
NIBBLE 1
FILTER 2
FILTER 1
00
01
10
11
PASS 1
Filter 1
Enable
2
Filter Logic
PASS
1P1[2]
1P1[1]
1P1[0]
D1[3]
D1[2]
D1[1]
D1[0]
NIBBLE 2
D2[3:0]
1P2[3:0]
1M2[3:0]
NIBBLE 3
NIBBLE 4
NIBBLE 5
D3[3:0]
1P3[3:0]
1M3[3:0]
D4[3:0]
1P4[3:0]
1M4[3:0]
D5[3:0]
1P5[3:0]
1M5[3:0]
D1..D5
2P1..2P5
2M1..2M5
PASS 2
Filter 2
Enable
Figure 2−27. Teletext Filter Function
2.11.65 VDP FIFO Word Count Register
Subaddress BCh
Read only
7 6 5 4 3 2 1 0
FIFO word count [7:0]
FIFO word count [7:0]: This register provides the number of words in the FIFO.
NOTE: 1 word equals 2 bytes.
2−58
2.11.66 VDP FIFO Interrupt Threshold Register
Subaddress BDh
Default 80h
7 6 5 4 3 2 1 0
Threshold [7:0]
Threshold [7:0]: This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds
this value.
NOTE: 1 word equals 2 bytes.
2.11.67 VDP FIFO Reset Register
Subaddress BFh
Default 00h
7 6 5 4 3 2 1 0
Reserved FIFO reset
FIFO reset: Writing any data to this register clears the FIFO and VDP data registers (CC, WSS, VITC and VPS). After
clearing them, this register is automatically cleared.
2.11.68 VDP FIFO Output Control Register
Subaddress C0h
Default 00h
7 6 5 4 3 2 1 0
Reserved Host access enable
Host access enable: This register is programmed to allow the host port access to the FIFO or to allow all VDP data
to go out the video output.
0 = Output FIFO data to the video output Y[9:2] (default)
1 = Allow host port access to the FIFO data
2.11.69 VDP Line Number Interrupt Register
Subaddress C1h
Default 00h
7 6 5 4 3 2 1 0
Field 1 enable Field 2 enable Line number [5:0]
Field 1 enable:
0 = Interrupt disabled (default)
1 = Interrupt enabled
Field 2 enable:
0 = Interrupt disabled (default)
1 = Interrupt enabled
Line number [5:0]: Interrupt line number (default 00h)
This register is programmed to trigger an interrupt when the video line number exceeds this value in bits [5:0]. This
interrupt must be enabled at address F4h.
NOTE: The line number value of 0 or 1 is invalid and does not generate an interrupt.
2−59
2.11.70 VDP Pixel Alignment Register
Subaddress C2h–C3h
Default 01Eh
Subaddress 7 6 5 4 3 2 1 0
C2h Pixel alignment [7:0]
C3h Reserved Pixel alignment [9:8]
Pixel alignment [9:0]: These registers form a 10-bit horizontal pixel position from the falling edge of horizontal sync,
where the VDP controller initiates the program from one line standard to the next line standard. For example, the
previous line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the
previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be programmed
before the current settings are required.
The default value is 0x1E and has been tested with every standard supported here. A new value is needed only if
a custom standard is in use.
2.11.71 VDP Line Start Register
Subaddress D6h
Default 06h
7 6 5 4 3 2 1 0
VDP line start [7:0]
VDP line start [7:0]: Sets the VDP line starting address
This register must be set properly before enabling the line mode registers. VDP processor works only in the VBI region
set by this register and the VDP line stop register at subaddress D7h (see Section 2.11.72).
2.11.72 VDP Line Stop Register
Subaddress D7h
Default 1Bh
7 6 5 4 3 2 1 0
VDP line stop [7:0]
VDP line stop [7:0]: Sets the VDP stop line address
2.11.73 VDP Global Line Mode Register
Subaddress D8h
Default FFh
7 6 5 4 3 2 1 0
Global line mode [7:0]
Global line mode [7:0]: VDP processing for multiple lines set by the VDP start line register at subaddress D6h and
the VDP stop line register at subaddress D7h.
Global line mode register has the same bit definition as the general line mode registers.
General line mode has priority over the global line mode.
2−60
2.11.74 VDP Full Field Enable Register
Subaddress D9h
Default 00h
7 6 5 4 3 2 1 0
Reserved Full field enable
Full field enable:
0 = Disabled full field mode (default)
1 = Enabled full field mode
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line
mode register programmed with FFh are sliced with the definition of the VDP full field mode register at subaddress
DAh. Values other than FFh in the line mode registers allow a different slice mode for that particular line.
2.11.75 VDP Full Field Mode Register
Subaddress DAh
Default FFh
7 6 5 4 3 2 1 0
Full field mode [7:0]
Full field mode [7:0]:
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line settings
take priority over the full field register. This allows each VBI line to be programmed independently but have the
remaining lines in full field mode. The full field mode register has the same bit definition as line mode registers (default
FFh).
Global line mode has priority over the full field mode.
2.11.76 VBUS Data Access With No VBUS Address Increment Register
Subaddress E0h
Default 00h
7 6 5 4 3 2 1 0
VBUS data [7:0]
VBUS data [7:0]: VBUS data register for VBUS single byte read/write transaction.
2.11.77 VBUS Data Access With VBUS Address Increment Register
Subaddress E1h
Default 00h
7 6 5 4 3 2 1 0
VBUS data [7:0]
VBUS data [7:0]: VBUS data register for VBUS multibyte read/write transaction. VBUS address is autoincremented
after each data byte read/write.
2−61
2.11.78 FIFO Read Data Register
Subaddress E2h
Read only
7 6 5 4 3 2 1 0
FIFO read data [7:0]
FIFO read data [7:0]: This register is provided to access VBI FIFO data through the host port. All forms of teletext
data come directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or
from the FIFO. If the host port is to be used to read data from the FIFO, then bit 0 (host access enable) in the VDP
FIFO output control register at subaddress C0h must be set to 1 (see Section 2.11.68).
2.11.79 VBUS Address Access Register
Subaddress E8h E9h EAh
Default 00h 00h 00h
Subaddress 7 6 5 4 3 2 1 0
E8h VBUS address [7:0]
E9h VBUS address [15:8]
EAh VBUS address [23:16]
VBUS address [23:0]: VBUS is a 24-bit wide internal bus. The user must program in these registers the 24-bit address
of the internal register to be accessed via host port indirect access mode.
2−62
2.11.80 Interrupt Raw Status 0 Register
Subaddress F0h
Read only
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed, unmasked
0 = Not passed
1 = Passed
TTX: Teletext data available unmasked
0 = Not available
1 = Available
WSS: WSS data available unmasked
0 = Not available
1 = Available
VPS: VPS data available unmasked
0 = Not available
1 = Available
VITC: VITC data available unmasked
0 = Not available
1 = Available
CC F2: CC field 2 data available unmasked
0 = Not available
1 = Available
CC F1: CC field 1 data available unmasked
0 = Not available
1 = Available
Line: Line number interrupt unmasked
0 = Not available
1 = Available
See also the interrupt raw status 1 register at subaddress F1h (see Section 2.11.81).
The host interrupt raw status 0 and 1 registers represent the interrupt status without applying mask bits.
2−63
2.11.81 Interrupt Raw Status 1 Register
Subaddress F1h
Read only
7 6 5 4 3 2 1 0
Reserved Macrovision status changed Standard changed FIFO full
Macrovision status changed: unmasked
0 = Macrovision status unchanged
1 = Macrovision status changed
Standard changed: unmasked
0 = Video standard unchanged
1 = Video standard changed
FIFO full: unmasked
0 = FIFO not full
1 = FIFO was full during write to FIFO
The FIFO full error flag is set when the current line of VBI data cannot enter the FIFO. For example, if the FIFO has
only 10 bytes left and teletext is the current VBI line, then the FIFO full error flag is set, but no data is written because
the entire teletext line does not fit. However, if the next VBI line is closed caption requiring only 2 bytes of data plus
the header, then this goes into the FIFO even if the full error flag is set.
2−64
2.11.82 Interrupt Status 0 Register
Subaddress F2h
Read only
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed, masked
0 = Not passed
1 = Passed
TTX: Teletext data available masked
0 = Not available
1 = Available
WSS: WSS data available masked
0 = Not available
1 = Available
VPS: VPS data available masked
0 = Not available
1 = Available
VITC: VITC data available masked
0 = Not available
1 = Available
CC F2: CC field 2 data available masked
0 = Not available
1 = Available
CC F1: CC field 1 data available masked
0 = Not available
1 = Available
Line: Line number interrupt masked
0 = Not available
1 = Available
See also the interrupt status 1 register at subaddress F3h (see Section 2.11.83).
The interrupt status 0 and 1 registers represent the interrupt status after applying mask bits. Therefore, the status
bits are the result of a logical AND between the raw status and mask bits. The external interrupt terminal is derived
from this register as an OR function of all nonmasked interrupts in this register.
Reading data from the corresponding register does not clear the status flags automatically. These flags are reset
using the corresponding bits in interrupt clear 0 and 1 registers.
2−65
2.11.83 Interrupt Status 1 Register
Subaddress F3h
Read only
7 6 5 4 3 2 1 0
Reserved Macrovsion status changed Standard changed FIFO full
Macrovision status changed: Macrovision status changed masked
0 = Macrovision status not changed
1 = Macrovision status changed
Standard changed: Standard changed masked
0 = Video standard not changed
1 = Video standard changed
FIFO full: Full status of FIFO masked
0 = FIFO not full
1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h for details (see
Section 2.11.85)
2−66
2.11.84 Interrupt Mask 0 Register
Subaddress F4h
Default 00h
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed mask
0 = Disabled (default)
1 = Enabled FIFO_THRES interrupt
TTX: Teletext data available mask
0 = Disabled (default)
1 = Enabled TTX available interrupt
WSS: WSS data available mask
0 = Disabled (default)
1 = Enabled WSS available interrupt
VPS: VPS data available mask
0 = Disabled (default)
1 = Enabled VPS available interrupt
VITC: VITC data available mask
0 = Disabled (default)
1 = Enabled VITC available interrupt
CC F2: CC field 2 data available mask
0 = Disabled (default)
1 = Enabled CC_field 2 available interrupt
CC F1: CC field 1 data available mask
0 = Disabled (default)
1 = Enabled CC_field 1 available interrupt
Line: Line number interrupt mask
0 = Disabled (default)
1 = Enabled Line_INT interrupt
See also the interrupt mask 1 register at subaddress F5h (see Section 2.11.85).
The host interrupt mask 0 and 1 registers can be used by the external processor to mask unnecessary interrupt
sources for the interrupt status 0 and 1 register bits, and for the external interrupt terminal. The external interrupt is
generated from all nonmasked interrupt flags.
2−67
2.11.85 Interrupt Mask 1 Register
Subaddress F5h
Default 00h
7 6 5 4 3 2 1 0
Reserved Macrovision status changed Standard changed FIFO full
Macrovision status changed: Macrovision status changed mask
0 = Macrovision status unchanged
1 = Macrovision status changed
Standard changed: Standard changed mask
0 = Disabled (default)
1 = Enabled video standard changed
FIFO full: FIFO full mask
0 = Disabled (default)
1 = Enabled FIFO full interrupt
2−68
2.11.86 Interrupt Clear 0 Register
Subaddress F6h
Default 00h
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed clear
0 = No effect (default)
1 = Clear bit 7 (FIFO_THRS) in the interrupt status 0 register at subaddress F2h
TTX: Teletext data available clear
0 = No effect (default)
1 = Clear bit 6 (TTX available) in the interrupt status 0 register at subaddress F2h
WSS: WSS data available clear
0 = No effect (default)
1 = Clear bit 5 (WSS available) in the interrupt status 0 register at subaddress F2h
VPS: VPS data available clear
0 = No effect (default)
1 = Clear bit 4 (VPS available) in the interrupt status 0 register at subaddress F2h
VITC: VITC data available clear
0 = Disabled (default)
1 = Clear bit 3 (VITC available) in the interrupt status 0 register at subaddress F2h
CC F2: CC field 2 data available clear
0 = Disabled (default)
1 = Clear bit 2 (CC field 2 available) in the interrupt status 0 register at subaddress F2h
CC F1: CC field 1 data available clear
0 = Disabled (default)
1 = Clear bit 1 (CC field 1 available) in the interrupt status 0 register at subaddress F2h
Line: Line number interrupt clear
0 = Disabled (default)
1 = Clear bit 0 (line interrupt available) in the interrupt status 0 register at subaddress F2h
See also the interrupt clear 1 register at subaddress F7h (see Section 2.11.87).
The host interrupt clear 0 and 1 registers are used by the external processor to clear the interrupt status bits in the
host interrupt status 0 and 1 registers. When no nonmasked interrupts remain set in the registers, the external
interrupt terminal also becomes inactive.
2−69
2.11.87 Interrupt Clear 1 Register
Subaddress F7h
Default 00h
7 6 5 4 3 2 1 0
Reserved Macrovision status changed Standard changed FIFO full
Macrovision status changed: Clear Macrovision status changed flag
0 = No effect (default)
1 = Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress F3h and the
interrupt raw status 1 register at subaddress F1h
Standard changed: Clear standard changed flag
0 = No effect (default)
1 = Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress F3h and the interrupt
raw status 1 register at subaddress F1h
FIFO full: Clear FIFO full flag
0 = No effect (default)
1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw status
1 register at subaddress F1h
2−70
2.12 VBUS Register Definitions
2.12.1 VDP Closed Caption Data Register
Subaddress 80 051Ch–80 051Fh
Read only
Subaddress 7 6 5 4 3 2 1 0
80 051Ch Closed caption field 1 byte 1
80 051Dh Closed caption field 1 byte 2
80 051Eh Closed caption field 2 byte 1
80 051Fh Closed caption field 2 byte 2
These registers contain the closed caption data arranged in bytes per field.
2.12.2 VDP WSS Data Register
Subaddress 80 0520h–80 0526h
WSS NTSC (CGMS):
Read only
Subaddress 7 6 5 4 3 2 1 0 Byte
80 0520h b5 b4 b3 b2 b1 b0 WSS field 1 byte 1
80 0521h b13 b12 b11 b10 b9 b8 b7 b6 WSS field 1 byte 2
80 0522h b19 b18 b17 b16 b15 b14 WSS field 1 byte 3
80 0523h Reserved
80 0524h b5 b4 b3 b2 b1 b0 WSS field 2 byte 1
80 0525h b13 b12 b11 b10 b9 b8 b7 b6 WSS field 2 byte 2
80 0526h b19 b18 b17 b16 b15 b14 WSS field 2 byte 3
These registers contain the wide screen signaling data for NTSC.
Bits 0–1 represent word 0, aspect ratio.
Bits 2–5 represent word 1, header code for word 2.
Bits 6–13 represent word 2, copy control.
Bits 14–19 represent word 3, CRC.
PAL/SECAM:
Read only
Subaddress 7 6 5 4 3 2 1 0 Byte
80 0520h b7 b6 b5 b4 b3 b2 b1 b0 WSS field 1 byte 1
80 0521h b13 b12 b11 b10 b9 b8 WSS field 1 byte 2
80 0522h Reserved
80 0523h Reserved
80 0524h b7 b6 b5 b4 b3 b2 b1 b0 WSS field 2 byte 1
80 0525h b13 b12 b11 b10 b9 b8 WSS field 2 byte 2
80 0526h Reserved
PAL/SECAM:
Bits 0–3 represent group 1, aspect ratio.
Bits 4–7 represent group 2, enhanced services.
Bits 8–10 represent group 3, subtitles.
Bits 11–13 represent group 4, others.
2−71
2.12.3 VDP VITC Data Register
Subaddress 80 052Ch–80 0534h
Read only
Subaddress 7 6 5 4 3 2 1 0
80 052Ch VITC frame byte 1
80 052Dh VITC frame byte 2
80 052Eh VITC seconds byte 1
80 052Fh VITC seconds byte 2
80 0530h VITC minutes byte 1
80 0531h VITC minutes byte 2
80 0532h VITC hours byte 1
80 0533h VITC hours byte 2
80 0534h VITC CRC byte
These registers contain the VITC data.
2.12.4 VDP V-Chip TV Rating Block 1 Register
Subaddress 80 0540h
Read only
7 6 5 4 3 2 1 0
Reserved 14-D PG-D Reserved MA-L 14-L PG-L Reserved
TV parental guidelines rating block 1:
14-D: When incoming video program is TV-14-D rated, then this bit is set high
PG-D: When incoming video program is TV-PG-D rated, then this bit is set high
MA-L: When incoming video program is TV-MA-L rated, then this bit is set high
14-L: When incoming video program is TV-14-L rated, then this bit is set high
PG-L: When incoming video program is TV-PG-L rated, then this bit is set high
2.12.5 VDP V-Chip TV Rating Block 2 Register
Subaddress 80 0541h
Read only
7 6 5 4 3 2 1 0
MA-S 14-S PG-S Reserved MA-V 14-V PG-V Y7-FV
TV parental guidelines rating block 2:
MA-S: When incoming video program is TV-MA-S rated, then this bit is set high
14-S: When incoming video program is TV-14-S rated, then this bit is set high
PG-S: When incoming video program is TV-PG-S rated, then this bit is set high
MA-V: When incoming video program is TV-MA-V rated, then this bit is set high
14-V: When incoming video program is TV-14-V rated, then this bit is set high
PG-V: When incoming video program is TV-PG-S rated, then this bit is set high
Y7-FV: When incoming video program is TV-Y7-FV rated, then this bit is set high
2−72
2.12.6 VDP V-Chip TV Rating Block 3 Register
Subaddress 80 0542h
Read only
7 6 5 4 3 2 1 0
None TV-MA TV-14 TV-PG TV-G TV-Y7 TV-Y None
TV parental guidelines rating block 3:
None: No block intended
TV-MA: When incoming video program is TV-MA rated in TV Parental Guidelines Rating, then this bit is set
high
TV-14: When incoming video program is TV-14 rated in TV Parental Guidelines Rating, then this bit is set
high
TV-PG: When incoming video program is TV-PG rated in TV Parental Guidelines Rating, then this bit is set
high
TV-G: When incoming video program is TV-G rated in TV Parental Guidelines Rating, then this bit is set high
TV-Y7: When incoming video program is TV-Y7 rated in TV Parental Guidelines Rating, then this bit is set
high
TV-Y: When incoming video program is TV-G rated in TV Parental Guidelines Rating, then this bit is set high
None: No block intended
2.12.7 VDP V-Chip MPAA Rating Data Register
Subaddress 80 0543h
Read only
7 6 5 4 3 2 1 0
Not Rated X NC-17 R PG-13 PG G N/A
MPAA rating block (E5h):
Not Rated: When incoming video program is Not Rated rated in MPAA Rating, then this bit is set high
X: When incoming video program is X rated in MPAA Rating, then this bit is set high
NC-17: When incoming video program is NC-17 rated in MPAA Rating, then this bit is set high
R: When incoming video program is R rated in MPAA Rating, then this bit is set high
PG-13: When incoming video program is PG-13 rated in MPAA Rating, then this bit is set high
PG: When incoming video program is PG rated in MPAA Rating, then this bit is set high
G: When incoming video program is G rated in MPAA Rating, then this bit is set high
N/A: When incoming video program is N/A rated in MPAA Rating, then this bit is set high
2−73
2.12.8 VDP General Line Mode and Line Address Register
Subaddress 80 0600h–80 0611h
(default line mode = FFh, address = 00h)
Subaddress 7 6 5 4 3 2 1 0
80 0600h Line address 1
80 0601h Line mode 1
80 0602h Line address 2
80 0603h Line mode 2
80 0604h Line address 3
80 0605h Line mode 3
80 0606h Line address 4
80 0607h Line mode 4
80 0608h Line address 5
80 0609h Line mode 5
80 060Ah Line address 6
80 060Bh Line mode 6
80 060Ch Line address 7
80 060Dh Line mode 7
80 060Eh Line address 8
80 060Fh Line mode 8
80 0610h Line address 9
80 0611h Line mode 9
Line address x [7:0]: Line number to be processed by a VDP set by a line mode register (default 00h)
Line mode x [7:0]:
Bit 7: 0 = Disabled filters
1 = Enabled filters for teletext and CC (Null byte filter) (default)
Bit 6: 0 = Send sliced VBI data to registers only (default)
1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)
Bit 5: 0 = Allow VBI data with errors in the FIFO
1 = Do not allow VBI data with errors in the FIFO (default)
Bit 4: 0 = Disabled error detection and correction
1 = Enabled error detection and correction (teletext only) (default)
Bit 3: 0 = Field 1
1 = Field 2 (default)
Bits [2:0]: 000 = Teletext (WST625, Chinese teletext, NABTS 525)
001 = CC (US, Europe, Japan, China)
010 = WSS (525, 625)
011 = VITC
100 = VPS (PAL only), EPG (NTSC only)
101 = USER 1
110 = USER 2
111 = Reserved (active video) (default)
2−74
2.12.9 VDP VPS/Gemstar Data Register
Subaddress 80 0700h–80 070Ch
VPS: Read only
Subaddress 7 6 5 4 3 2 1 0
80 0700h VPS byte 1
80 0701h VPS byte 2
80 0702h VPS byte 3
80 0703h VPS byte 4
80 0704h VPS byte 5
80 0705h VPS byte 6
80 0706h VPS byte 7
80 0707h VPS byte 8
80 0708h VPS byte 9
80 0709h VPS byte 10
80 070Ah VPS byte 11
80 070Bh VPS byte 12
80 070Ch VPS byte 13
These registers contain the entire VPS data line except the clock run-in code or the start code.
Gemstar: Read only
Subaddress 7 6 5 4 3 2 1 0
80 0700h Gemstar frame code
80 0701h Gemstar byte 1
80 0702h Gemstar byte 2
80 0703h Gemstar byte 3
80 0704h Gemstar byte 4
80 0705h Reserved
80 0706h Reserved
80 0707h Reserved
80 0708h Reserved
80 0709h Reserved
80 070Ah Reserved
80 070Bh Reserved
80 070Ch Reserved
2.12.10 VDP FIFO Read Register
Subaddress 90 1904h
Read only
7 6 5 4 3 2 1 0
FIFO data [7:0]
FIFO data [7:0]: This register is provided to access VBI FIFO data through the host port. All forms of teletext data come
directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO.
If the host port is to be used to read data from the FIFO, then bit 0 (host access enable) in the FIFO output control
register at subaddress C0h must be set to 1.
2−75
2.12.11 Interrupt Configuration Register
Subaddress B0 0060h
Default 00h
7 6 5 4 3 2 1 0
Reserved Polarity Reserved
Polarity: Interrupt terminal polarity
0 = Active high (default)
1 = Active low
2−76
ompm cunem, v0m ompm cunem, v0m
3−1
3 Electrical Specifications
3.1 Absolute Maximum Ratings
Supply voltage range: IOVDD to I/O GND 0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DVDD to DGND −0.2 V to 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A33VDD (see Note 1) to A18GND (see Note 2) −0.3 V to 3.6 V. . . . . . . . . . . . . . . .
A18VDD (see Note 3) to A33GND (see Note 4) −0.2 V to 2 V. . . . . . . . . . . . . . . . . .
Digital input voltage, VI to DGND −0.5 V to 4.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital output voltage, VO to DGND −0.5 V to 4.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog input voltage range AIN to AGND −0.2 V to 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature, TA 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. CH1_A33VDD, CH2_A33VDD, CH3_A33VDD, CH4_A33VDD
2. CH1_A33GND, CH2_A33GND, CH3_A33GND, CH4_A33GND
3. CH1_A18VDD, CH2_A18VDD, CH3_A18VDD, CH4_A18VDD, A18VDD_REF, PLL_A18VDD
4. CH1_A18GND, CH2_A18GND, CH3_A18GND, CH4_A18GND
3.2 Recommended Operating Conditions
MIN NOM MAX UNIT
IOVDD Digital supply voltage 3 3.3 3.6 V
DVDD Digital supply voltage 1.65 1.8 1.95 V
AVDD33 Analog supply voltage 3 3.3 3.6 V
AVDD18 Analog supply voltage 1.65 1.8 1.95 V
VI(P-P) Analog input voltage (ac-coupling necessary) 0.5 1 2 V
VIH Digital input voltage high (Note 1) 0.7 IOVDD V
VIL Digital input voltage low (Note 2) 0.3 IOVDD V
IOH Output current, Vout = 2.4 V −4 −8 mA
IOL Output current, Vout = 0.4 V 6 8 mA
TAOperating free-air temperature 0 70 °C
NOTES: 1. Exception: 0.7 AVDD18 for XTAL1 terminal
2. Exception: 0.3 AVDD18 for XTAL1 terminal
3.2.1 Crystal Specifications
CRYSTAL SPECIFICATIONS MIN NOM MAX UNIT
Frequency 14.31818 MHz
Frequency tolerance ±50 ppm
1MHz‘1.0 v.1.)
3−2
3.3 Electrical Characteristics
For minimum/maximum values: IOVDD = 3.0 V to 3.6 V, DVDD = 1.65 V to 1.95 V, AVDD33 = 3.0 V to 3.6 V,
AVDD18 = 1.65 V to 1.95 V, TA = 0°C to 70°C
For typical values: IOVDD = 3.3 V, DVDD = 1.8 V, AVDD33 = 3.3 V, AVDD18 = 1.8 V, TA = 25°C
3.3.1 DC Electrical Characteristics
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDDIO(D)
3.3-V IO digital supply current
CVBS 6
mA
IDDIO(D
)
3.3-V IO digital supply current RGB and CVBS 6mA
IDD(D)
1.8-V digital supply current
CVBS 66.2
mA
IDD(D) 1.8-V digital supply current RGB and CVBS 67 mA
IDD33(A)
3.3-V analog supply current
CVBS 16
mA
IDD33(A
)
3.3-V analog supply current RGB and CVBS 47.8 mA
IDD18(A)
1.8-V analog supply current
CVBS 79.3
mA
IDD18(A
)
1.8-V analog supply current RGB and CVBS 240 mA
PTOT
Total power dissipation (normal operation)
CVBS 334.5
mW
PTOT Total power dissipation (normal operation) RGB and CVBS 730 mW
PSAVE Total power dissipation (power save) 100 mW
PDOWN Total power dissipation (power down) 11 mW
Ilkg Input leakage current 10 µA
CiInput capacitance By design 8 pF
VOH Output voltage high 0.8 IOVDD V
VOL Output voltage low 0.2 IOVDD V
NOTE 1: Measured with a load of 10 k in parallel to 15 pF.
3.3.2 Analog Processing and A/D Converters
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ZiInput impedance, analog video inputs By design 200 k
CiInput capacitance, analog video inputs By design 10 pF
Vi(pp) Input voltage range Ccoupling = 47 nF 0.50 1 2 V
GGain control range −6 6 dB
DNL Differential nonlinearity AFE only 0.75 1.0 LSB
INL Integral nonlinearity AFE only 1 2.5 LSB
Fr Frequency response Multiburst (60 IRE) −0.9 dB
XTALK Crosstalk 1 MHz −50 dB
SNR Signal-to-noise ratio, all channels 1 MHz, 1.0 VP-P 54 dB
GM Gain match (Note 1) Full scale, 1 MHz 1.1% 1.5%
NS Noise spectrum Luma ramp (100 kHz to full, tilt-null) −58 dB
DP Differential phase Modulated ramp 0.5 °
DG Differential gain Modulated ramp ±1.5%
NOTE 1: Component inputs only
P xxxxx P a J E
3−3
3.3.3 Timing
3.3.3.1 Clocks, Video Data, Sync Timing
PARAMETER TEST CONDITIONS
(see Note 1) MIN TYP MAX UNIT
Duty cycle DATACLK 45% 50% 55%
t1High time, DATACLK 18.5 ns
t2Low time, DATACLK 18.5 ns
t3Fall time, DATACLK 90% to 10% 4 ns
t4Rise time, DATACLK 10% to 90% 4 ns
t5Output delay time 10 ns
NOTE 1: CL = 15 pF
t1
DATACLK
Y, C, AVID, VS, HS, FID
t4
t2
t3
t5
VOH
VOL
Valid Data Valid Data
VOH
VOL
Figure 3−1. Clocks, Video Data, and Sync Timing
3−4
3.3.3.2 I2C Host Port Timing
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t1Bus free time between STOP and START 1.3 µs
t2Data hold time 0 0.9 µs
t3Data setup time 100 ns
t4Setup time for a (repeated) START condition 0.6 µs
t5Setup time for a STOP condition 0.6 ns
t6Hold time (repeated) START condition 0.6 µs
t7Rise time VC1(SDA) and VC0(SCL) signal 250 ns
t8Fall time VC1(SDA) and VC0(SCL) signal 250 ns
CbCapacitive load for each bus line 400 pF
fI2C I2C clock frequency 400 kHz
t5
Stop Start
VC1 (SDA)
t1t6t7t2t8
t3t4
t6
VC0 (SCL)
Data
Stop
Change
Data
Figure 3−2. I2C Host Port Timing
4−1
4 Example Register Settings
The following example register settings are provided only as a reference. These settings, given the assumed input
connector, video format, and output format, set up the TVP5146 decoder and provide video output. Example register
settings for other features and the VBI data processor are not provided here.
4.1 Example 1
4.1.1 Assumptions
Input connector: Composite (VI_1_A) (default)
Video format: NTSC (J, M), PAL (B, G, H, I, N) or SECAM (default)
NOTE: NTSC-443, PAL-Nc, and PAL-M are masked from the autoswitch process by default.
See the autoswitch mask register at address 04h.
Output format: 10-bit ITU-R BT.656 with embedded syncs (default)
4.1.2 Recommended Settings
Recommended I2C writes: For the given assumptions, only one write is required. All other registers are set up by
default.
I2C register address 08h = Luminance processing control 3 register
I2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I2C register address 0Eh = Chrominance processing control 3 register
I2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I2C register address 34h = Output formatter 2 register
I2C data 11h = Enables YCbCr output and the clock output
NOTE: HS/CS, VS/VBLK, AVID, FID, and GLCO are logic inputs by default. See output
formatter 3 and 4 registers at addresses 35h and 36h, respectively.
4−2
4.2 Example 2
4.2.1 Assumptions
Input connector: S-video [VI_2_C (luma), VI_1_C (chroma)]
Video format: NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAM
Output format: 10-bit 4:2:2 YCbCr with discrete sync outputs
4.2.2 Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 10-bit 4:2:2 data, HS, and
VS, and to autoswitch between all video formats mentioned above.
I2C register address 00h = Input select register
I2C data 46h = Sets luma to VI_2_C and chroma to VI_1_C
I2C register address 04h = Autoswitch mask register
I2C data 3Fh = Includes NTSC 443 and PAL (M, Nc) in the autoswitch
I2C register address 08h = Luminance processing control 3 register
I2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I2C register address 0Eh = Chrominance processing control 2 register
I2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I2C register address 33h = Output formatter 1 register
I2C data 43h = Selects the 10-bit 4:2:2 output format
I2C register address 34h = Output formatter 2 register
I2C data 11h = Enables YCbCr output and the clock output
I2C register address 36h = Output formatter 4 register
I2C data AFh = Enables HS and VS sync outputs
4−3
4.3 Example 3
4.3.1 Assumptions
Input connector: Component [VI_1_B (Pb), VI_2_B (Y), VI_3_B (Pr)]
Video format: NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAM
Output format: 20-bit 4:2:2 YCbCr with discrete sync outputs
4.3.2 Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 20-bit 4:2:2 data, HS, and
VS, and to autoswitch between all video formats mentioned above.
I2C register address 00h = Input select register
I2C data 95h = Sets Pb to VI_1_B, Y to VI_2_B, and Pr to VI_3_B
I2C register address 04h = Autoswitch mask register
I2C data 3Fh = Includes NTSC 443 and PAL (M, Nc) in the autoswitch
I2C register address 08h = Luminance processing control 3 register
I2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I2C register address 0Eh = Chrominance processing control 2 register
I2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I2C register address 33h = Output formatter 1 register
I2C data 41h = Selects the 20-bit 4:2:2 output format
I2C register address 34h = Output formatter 2 register
I2C data 11h = Enables YCbCr output and the clock output
I2C register address 36h = Output formatter 4 register
I2C data AFh = Enables HS and VS sync outputs
4−4
5 Application Inform 5.1 Application Examp l‘ l‘ 7 \/ y y y _ 7 9“ i? 5» : c :_> C :4 7 , > ) , “ 1%{4 : V I _ ‘ ,T, / \ 7‘ ‘ : T \ ‘ :1 < 4="" i="" h="" g="" e="" r="" 7="" filtm="" ‘j‘x,="" ltx="" i="" li,="" +="" c="" ‘="" c="" nw="" ‘="" 1,11%,="" fwii?="" :="" t="" .="" .lmhv="" .imht="" ti.="" @="" ail?="" a»="" w="" 95="" .,="" a="">
5−1
5 Application Information
5.1 Application Example
NOTE: If XTAL1 is connected to clock source, input voltage high must be 1.8 V.
Terminals 69 and 71 must be connected to ground through pulldown resistors.
TVP5146PFP
VI_1_A
CH1_A18GND
CH1_A18VDD
PLL_A18GND
PLL_A18VDD
XTAL2
XTAL1
VS/VBLK
HS/CS
FID
C_0
C_1
DGND
DVDD
C_2
C_3
C_4
C_5
IOGND
IOVDD
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
C_6/RED
C_7/GREEN
C_8/BLUE
C_9/FSO
DGND
DVDD
Y_0
Y_1
Y_2
Y_3
Y_4
IOGND
IOVDD
Y_5
Y_6
Y_7
Y_8
Y_9
DGND
DVDD
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
1
2
3
4
5
6
7
8
9
10
11
15
16
17
18
12
13
14
19
20
VI_1_B
VI_1_C
CH1_A33GND
CH1_A33VDD
CH2_A33VDD
CH2_A33GND
VI_2_A
VI_2_B
VI_2_C
CH2_A18GND
CH2_A18VDD
A18VDD_REF
A18GND_REF
CH3_A18VDD
CH3_A18GND
VI_3_A
VI_3_B
VI_3_C
CH3_A33GND
CH3_A33VDD
CH4_A33VDD
CH4_A33GND
VI_4A
CH4_A18GND
CH4_A18VDD
AGND
DGND
SCL
SDA
INTREQ
DVDD
DGND
PWDN
RESETB
FSS
AVID
GLCO/I2CA
IOVDD
IOGND
DATACLK
40
39
38
37
36
35
34
33
32
31
30
29
22
21
28
27
26
25
24
23
A3.3VDD
GND
C_7
C_8
C_9
FID
VS/VBLK
DATACLK
GLCO/I2CA
V
I_1B
V
I_1C
V
I_2A
V
I_2B
V
I_3A
V
I_3B
V
I_2C
V
I_3C
V
I_4A
AVID
FSS
RESETB
PWDN
CL1 CL2
14.31818 MHz
INTREQ
SDA
SCL
Y_0
Y_1
Y_2
Y_3
Y_4
Y_5
Y_6
Y_7
Y_8
Y_9
C_6
C_3
C_4
C_5
C_2
C_1
C_0
V
I_1A
HS/CS
XTAL1
XTAL2
XTAL1
XTAL2
A1.8VDD
1
2
3
I2C Address selection
1−2 Base Addr. 0xBA
2−3 Base Addr. 0xB8
GLCO/I2CA
DVDD1.8V
IOVDD3.3V
IOVDD
2.2 k (2)
75
75 (3)
75 (3)
75 (3)
2.2 k
10 k
10 k
0.1 µ
F
0.1 µF (2)
0.1 µF
0.1 µF (2)
0.1 µF
0.1 µF
0.1 µF (3)
0.1 µF
0.1 µF (2)
0.1 µF
0.1 µF
0.1 µF (3)
0.1 µF (3)
0.1 µF (3)
0.1 µF
0.1 µ
F
2.2 k
Figure 5−1. Application Example
etechnical briel, T| literature number SLMA002, available via the TI Web pages at URL http://www.ti.com
5−2
5.2 Designing With PowerPADt Devices
The TVP5146 device is housed in a high-performance, thermally enhanced, 80-terminal PowerPAD package (TI
package designator: 80PFP). Use of the PowerPAD package does not require any special considerations except to
note that the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical
conductor. Therefore, if not implementing the PowerPAD PCB features, the use of solder masks (or other assembly
techniques) may be required to prevent any inadvertent shorting by the exposed thermal pad of connection etches
or vias under the package. The recommended option, however, is not to run any etches or signal vias under the
device, but to have only a grounded thermal land as explained in the following paragraphs. Although the actual size
of the exposed die pad may vary, the minimum size required for the keep-out area for the 80-terminal PFP PowerPAD
package is 8 mm × 8 mm.
It is recommended that there be a thermal land, which is an area of solder-tinned copper, underneath the PowerPAD
package. The thermal land varies in size, depending on the PowerPAD package being used, the PCB construction,
and the amount of heat that needs to be removed. In addition, the thermal land may or may not contain numerous
thermal vias depending on PCB construction.
Other requirements for using thermal lands and thermal vias are detailed in the PowerPADt Thermally Enhanced
Package technical brief, TI literature number SLMA002, available via the TI Web pages at URL http://www.ti.com.
For the TVP5146 device, this thermal land must be grounded to the low-impedance ground plane of the device. This
improves not only thermal performance but also the electrical grounding of the device. It is also recommended that
the device ground terminal landing pads be connected directly to the grounded thermal land. The land size must be
as large as possible without shorting device signal terminals. The thermal land may be soldered to the exposed
thermal pad using standard reflow soldering techniques.
While the thermal land may be electrically floated and configured to remove heat to an external heat sink, it is
recommended that the thermal land be connected to the low impedance ground plane for the device. More
information can be obtained from the TI Recommendations for PHY Layout applicaton report, TI literature number
SLLA020.
PowerPAD is a trademark of Texas Instruments.
7 1,20 MAX
6−1
6 Mechanical Data
PFP (S-PQFP-G80) PowerPAD PLASTIC QUAD FLATPACK
40
Thermal Pad
(see Note D)
21 0,13 NOM
0,25
0,75
0,45
Seating Plane
4146925/B 08/03
Gage Plane
0,27
41
0,17
20
60
1
61
80
SQ
SQ
12,20
13,80
14,20
11,80
9,50 TYP
1,05
1,20 MAX
0,95
0,50
0,08
M
0,08
0°ā7°
0,15
0,05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad
Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding
recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. Falls within JEDEC MS-026
PowerPAD is a trademark of Texas Instruments.
6−2