Renesas Electronics Corporation 的 IDTQS3VH257 规格书

RENESAS U U \ l © 2019 Renesas E‘eamnics Corporauon
1
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
FEBRUARY 2014
2014 Integrated Device Technology, Inc. DSC-5596/15c
IDTQS3VH257
INDUSTRIAL TEMPERATURE RANGE
QUICKSWITCH® PRODUCTS
2.5V/3.3V QUAD 2:1 MUX/DEMUX
HIGH BANDWIDTH BUS SWITCH
FUNCTIONAL BLOCK DIAGRAM
DESCRIPTION:
The QS3VH257 HotSwitch Quad 2:1 multiplexer/demultiplexer is a high
bandwidth bus switch. The QS3VH257 has very low ON resistance,
resulting in under 250ps propagation delay through the switch. The Select
(S) input controls the data flow. The multiplexers/demultiplexers are
enabled when the Enable (E) input is low. In the ON state, the switches can
pass signals up to 5V. In the OFF state, the switches offer very high
impedence at the terminals.
The combination of near-zero propagation delay, high OFF impedance,
and over-voltage tolerance makes the QS3VH257 ideal for high perfor-
mance communication applications.
The QS3VH257 is characterized for operation from -40°C to +85°C.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
APPLICATIONS:
• Hot-swapping
• Multiplexing/demultiplexing
Low distortion analog switch
Replaces mechanical relay
ATM 25/155 switching
FEATURES:
N channel FET switches with no parasitic diode to VCC
Isolation under power-off conditions
No DC path to VCC or GND
5V tolerant in OFF and ON state
5V tolerant I/Os
Low RON - 4ΩΩ
ΩΩ
Ω typical
Flat RON characteristics over operating range
Rail-to-rail switching 0 - 5V
Bidirectional dataflow with near-zero delay: no added ground
bounce
Excellent RON matching between channels
•VCC operation: 2.3V to 3.6V
High bandwidth - up to 500MHz
LVTTL-compatible control Inputs
Undershoot Clamp Diodes on all switch and control Inputs
Low I/O capacitance, 4pF typical
Available in QSOP, SOIC, and TSSOP packages
YA
B
C
D
I0A
A
B
B
C
C
D
D
I1
I0
I1
I0
I1
I0
I1
Y
Y
Y
S
E
ABSOLUTE MAXIMUM RATINGS S | Descri lion Max Unit \J [1 16] [2 153E [3 14] [4 13] [5 12] [6 11] I: 7 10 ] CAPACITANCE [8 9] PIN DESCRIPTION © 2019 Renesas E‘eamnics Cameraman
2
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
PIN CONFIGURATION
Symbol Description Max Unit
VTERM(2) SupplyVoltage to Ground –0.5 to +4.6 V
VTERM(3) DC Switch Voltage VS–0.5 to +5.5 V
VTERM(3) DC Input Voltage VIN –0.5 to +5.5 V
VAC AC Input Voltage (pulse width 20ns) –3 V
IOUT DC Output Current (max. sink current/pin) 120 mA
TSTG Storage Temperature –65 to +150 °C
ABSOLUTE MAXIMUM RATINGS(1)
NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
2. VCC terminals.
3. All terminals except VCC .
NOTE:
1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedence
Inputs Outputs
ESYAYBYCYDFunction
H X Z Z Z Z Disable
LLI0AI0BI0CI0DSelect 0
LHI1
AI1BI1CI1DSelect 1
FUNCTION TABLE(1)
QSOP/ SOIC/ TSSOP
TOP VIEW
1
2
3
4
5
6
7
16
15
14
13
12
11
10
I0A
I1A
I0B
I1B
GND
VCC
I0D
I1D
E
I0C
I1C
S
YA
YD
89
YB
YCSymbol Parameter(1) Typ. Max. Unit
CIN Control Inputs 3 5 pF
CI/O Quickswitch Channels Demux 4 6 pF
(Switch OFF) Mux 7 9
CI/O Quickswitch Channels Demux 10 15 pF
(Switch ON) Mux 10 15
CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT =
0V)
NOTE:
1. This parameter is guaranteed but not production tested.
Pin Names I/O Description
Ixx I Data Inputs
S I Select Input
EI Enable Input
YA - YDO Data Outputs
PIN DESCRIPTION
© 2019 Renesas E‘eamnics Cameraman
3
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
TYPICAL ON RESISTANCE vs VIN AT VCC = 3.3V
RON
(ohms)
VIN
(Volts)
16
14
12
10
8
6
4
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.04.5
Symbol Parameter Test Conditions Min. Typ.(1) Max. Unit
VIH Input HIGH Voltage Guaranteed Logic HIGH VCC = 2.3V to 2.7V 1.7 V
for Control Inputs VCC = 2.7V to 3.6V 2
VIL Input LOW Voltage Guaranteed Logic LOW VCC = 2.3V to 2.7V 0.7 V
for Control Inputs VCC = 2.7V to 3.6V 0.8
IIN Input Leakage Current (Control Inputs) 0V VIN VCC ——±1μA
IOZ Off-State Current (Hi-Z) 0V VOUT 5V, Switches OFF ±1 μA
IOFF Data Input/Output Power Off Leakage VIN or VOUT 0V to 5V, VCC = 0V ±1 μA
VCC = 2.3V VIN = 0V ION = 30mA 6 8
RON Switch ON Resistance Typical at VCC = 2.5V VIN = 1.7V ION = 15mA 7 9 Ω
VCC = 3V VIN = 0V ION = 30mA 4 6
VIN = 2.4V ION = 15mA 5 8
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: TA = –40°C to +85°C, VCC = 3.3V ±0.3V
NOTE:
1. Typical values are at VCC = 3.3V and TA = 25°C.
POWE CHARACTE © 2019 Renesas E‘eamnics Corporauon
4
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V
ICCD (mA)
ENABLE FREQUENCY (MHz)
NOTES:
1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per input driven at the specified level. Mux/demux pins do not contribute to ΔIcc.
3. This parameter is guaranteed but not tested.
4. This parameter represents the current required to switch internal capacitance at the specified frequency. The mux/demux inputs do not contribute to the Dynamic Power Supply Current.
This parameter is guaranteed but not production tested.
POWER SUPPLY CHARACTERISTICS
Symbol Parameter Test Conditions(1) Min. Typ. Max. Unit
ICCQ Quiescent Power Supply Current VCC = Max., VIN = GND or VCC, f = 0 2 4 mA
ΔICC Power Supply Current (2,3) per Input HIGH VCC = Max., VIN = 3V, f = 0 per Control Input 30 μA
ICCD Dynamic Power Supply Current(4) VCC = 3.3V, A and B Pins Open, Control Inputs See Typical ICCD vs Enable Frequency graph below
Toggling @ 50% Duty Cycle
0
2
4
6
8
02468101214161820
© 2019 Renesas E‘eamnics Corporauon
5
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
SWITCHING CHARACTERISTICS OVER OPERATING RANGE
TA = -40°C to +85°C
VCC = 2.5 ± 0.2V (1) VCC = 3.3 ± 0.3V (1)
Symbol Parameter Min. (4) Max. Min. (4) Max. Unit
tPLH Data Propagation Delay(2,3) 0.2 0.2 ns
tPHL Yx to Ixx or Ixx to Yx
tSEL Select Time 1.5 9 1.5 8 ns
S to Yx
tPZH Enable Time 1.5 9 1.5 9 ns
tPZL S to Ixx
tPHZ Disable Time 1.5 8 1.5 8 ns
tPLZ S to Ixx
tPZH Enable Time 1.5 9 1.5 8 ns
tPZL E to Yx or Ixx
tPHZ Disable Time 1.5 8 1.5 8 ns
tPLZ E to Yx or Ixx
fEorS Operating Frequency - Enable(2,5) 10 20 MHz
NOTES:
1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the
order of 0.2ns at CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation
delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
4. Minimums are guaranteed but not production tested.
5. Maximum toggle frequency for S or E control input (pass voltage > VCC, VIN = 5V, RLOAD 1MΩ, no CLOAD).
—.— CHARGE PUMP +5-5V —‘—DR\VEH SINGLE HOT SWITCH ]} n o 8 ONCARD 5 2 ' ' LOGIC ‘ ' E i CF“ 4 x o x :1 n o 8 ONCARD 5 2 ‘ LOGIC E i U 4 x o x :1 © 2019 Renesas E‘eamnics Corporauon
6
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
MEMORY
MEMORY
CPU
MULTIPLEXING
CONTROL CIRCUITRY
CHARGE PUMP
OE
Vcc = 3.3V
0 to +5V NFET
+6.5V
DRIVER
0 to +5V
SINGLE HOT
SWITCH
CARD I/O ON CARD
LOGIC
CONNECTOR
QS3VHXXX
CPU
RAM
BUS
CARD I/O ON CARD
LOGIC
CONNECTOR
QS3VHXXX
PLUGGABLE CARD/ LIVE SYSTEM ZERO DOWN TIME SYSTEM
Rail-to-Rail Switching
SOME APPLICATIONS FOR HOTSWITCH PRODUCTS
Multiplexing / Demultiplexing
Hot-Swapping
“‘4. .4) J, T LL © 2019 Renesas E‘eamnics Corporauon
7
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
TEST CIRCUITS AND WAVEFORMS
Open
VLOAD
GND
VCC
Pulse
Generator D.U.T.
500Ω
500Ω
CL
RT
VIN VOUT
(1, 2)
SAME PHASE
INPUT TRANSITION
OPPOSITE PHASE
INPUT TRANSITION
0V
0V
VOH
VOL
tPLH tPHL
tPHL
tPLH
OUTPUT
VIH
VT
VT
VIH
VT
CONTROL
INPUT
tPLZ 0V
OUTPUT
NORMALLY
LOW tPZH
0V
SWITCH
CLOSED
OUTPUT
NORMALLY
HIGH
ENABLE DISABLE
SWITCH
OPEN
tPHZ
0V
VOL + VLZ
VOH
VT
VT
tPZL
VLOAD/2 VLOAD/2
VIH
VT
VOL
VOH -VHZ
TEST CONDITIONS
Symbol VCC(1)= 3.3V ± 0.3V VCC(2)= 2.5V ± 0.2V Unit
VLOAD 6 2 x Vcc V
VIH 3 Vcc V
VT1.5 VCC/2 V
VLZ 300 150 mV
VHZ 300 150 mV
CL50 30 pF
NOTE:
1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
NOTES:
1. Pulse Generator for All Pulses: Rate 10MHz; tF 2.5ns; tR 2.5ns.
2. Pulse Generator for All Pulses: Rate 10MHz; tF 2ns; tR 2ns.
DEFINITIONS:
CL = Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.
SWITCH POSITION
Test Switch
tPLZ/tPZL VLOAD
tPHZ/tPZH GND
tPD Open
Propagation Delay
Test Circuits for All Outputs
Enable and Disable Times
XXXXXXX
8
INDUSTRIAL TEMPERATURE RANGE
IDTQS3VH257
2.5V / 3.3V QUAD 2:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH
ORDERING INFORMATION
QS XXXXX XX
Package
Device Type
X
Blank
8
Tube or Tray
Tape and Reel
3VH257 2.5V / 3.3V Quad 2:1 Mux/Demux
High Bandwidth Bus Switch
S1G
QG
PAG
SOIC - Green
QSOP - Green
TSSOP - Green
CORPORATE HEADQUARTERS for SALES: for Tech Support:
6024 Silver Creek Valley Road 800-345-7015 or 408-284-8200 logichelp@idt.com
San Jose, CA 95138 fax: 408-284-2775
www.idt.com
Datasheet Document History
09/01/08 Pg. 4, 8 Revise ICCQ Typ. and Max. Remove non green package version and updated the ordering
information by removing the “IDT” notation.
02/24/14 Pg. 8 Updated the Ordering Information by Adding Tape and Reel information.
TOYOSU FORESIA Forlunher Normal Kola-kn, Tokyo 135 up-Io-date version www,renesas.com office, please visit, www.renesas.com/comaco/
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
© 2020 Renesas Electronics Corporation. All rights reserved.