Micrel Inc. 的 MICRF113 规格书

EI'IIIIREU
MICRF113
300MHz to 450MHz +10dBm
ASK Transmitter in SOT23
QwikRadio is a registered trademark of Micrel, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
November 2010 M9999-112310
General Description
The MICRF113 is a high-performance, easy-to-use, single-
chip ASK Transmitter IC for remote wireless applications in
the 300MHz to 450MHz frequency band. This transmitter
IC is a true “data-in, antenna-out” monolithic device.
MICRF113 has three strong attributes: power delivery,
operating voltage and operating temperature. In terms of
power, the MICRF113 is capable of delivering +10dBm
into a 50 load. This power level enables a small form
factor transmitter (lossy antenna) such as a key fob
transmitter to operate near the maximum limit of
transmission regulations. In terms of operating voltage, the
MICRF113 operates from 1.8V to 3.6V. Many transmitter
ICs in the same frequency band stop operating below
2.0V. The MICRF113 will work with most batteries to the
end of their useful limits. In terms of operating
temperature, the MICRF113 operates from 40°C to
+85°C.
The MICRF113 is easy to use. It requires a reference
frequency (RF carrier frequency divided by 32 times)
generated from a crystal with a few additional external
parts to create a complete versatile transmitter.
The MICRF113 operates with Amplitude Shift Keying/On-
Off Keyed (ASK/OOK) UHF receiver types from wide-band
super-regenerative radios to narrow-band, high-
performance super-heterodyne receivers. The
MICRF113’s maximum ASK bit rate is 20kbps (minimum
pulse width of 50µs at ASK pin).
The MICRF113 transmitter solution is ideal for industrial
and consumer applications where simplicity and form
factor are important.
Data sheets and support documentation can be found on
Micrel’s web site at: www.micrel.com.
Features
Complete UHF ASK transmitter
Frequency range 300MHz to 450MHz
Bit rates up to 20kbps
Output power up to 10dBm
Low external part count
Low voltage operation (down to 1.8V)
Operate with crystals or ceramic resonators
6-pin SOT23
Applications
Fan Controllers
Remote Power Switches
Multimedia Remote Control
Remote Sensor Data Links
Infrared Transmitter Replacement
Ordering Information
Part Number Temperature Range Package
MICRF113YM6 40°C to +85°C SOT23-6
L1 01 “0"” l mums 3V L2 MICRF113 52m 1150ng . 5 | FCL; WI (:3 FAouT ASK D T ) 1 ANTENNA tapF/suv 2 V55 mm 5 3 v I: 3 van mom ‘ w :fl|—- , 13 580MHz ::c2 c4 ::(9 M375MHz)-- 4 79F (6 5pr 18pF 1CBSpF 47 PAOUT ASK VSS XTLIN VDD 4 XTLOUT SOT23-6
Micrel, Inc. MICRF113
November 2010 2 M9999-112310
Typical Application
Figure 1. Typical Application Circuit for 433.92MHz and 315MHz
(component values for 315MHz in parenthesis)
Pin Configuration
Pin Description
Pin Number
MSOP-6 Pin Name Pin Function
1 PAOUT PA output
2 VSS Ground
3 VDD Positive Power Supply Voltage (Input)
4 XTLOUT Crystal Out (Output): Reference Oscillator Output Connection.
5 XTLIN Crystal In (Input): Reference Oscillator Input Connection.
6 ASK ASK DATA Input
Micrel, Inc. MICRF113
November 2010 3 M9999-112310
Absolute Maximum Ratings(1)
Supply Voltage VDD .....................................................+5.0V
Voltage on PAOUT ........................................................+7.2V
Voltage on I/O Pins ............................ VSS – 0.3 to VDD + 0.3
Storage Temperature Range ...................65°C to + 150°C
Lead Temperature (soldering, 10s)......................... + 300°C
ESD Rating(3).................................................................. 2kV
Operating Ratings(2)
Supply Voltage VDD .......................................... 1.8V to 3.6V
Ambient Operating Temperature (TA) ......... –40°C to +85°C
Transmitter Frequency Range ............. 300MHz to 450MHz
Electrical Characteristics(4)
VDD = 3.0V, TA = 25°C, FreqREFOSC = 13.560MHz. Bold values indicate –40°C to 85°C unless otherwise noted. 2kbps bit rate, 50 load.
Parameter Condition Min. Typ. Max. Units
Power Supply
@ 315MHz, POUT = +10dBm 12.3 Mark Supply Current IMARK,
VASK = 3.0V @ 433.92MHz, POUT = +10dBm 12.5
mA
@ 315MHz 2 SPACE Supply Current, ISPACE,
VASK = 0V @ 433.92 MHz 2
mA
RF Output Section and Modulation Limits
@315MHz(4) 10
Output Power Level, POUT ASK "mark"
@433.92MHz(4) 10
dBm
@ 630MHz(4) 2nd harm. 39
Harmonics Output for 315MHz
@945MHz(4) 3rd harm. 53
dBc
@ 867.84MHz(4) 2nd harm. 55
Harmonics Output for 433.92MHz
@1301.76MHz(4) 3rd harm. 55
dBc
Extinction Ratio for ASK 70 dBc
ASK Modulation
Encoded Bit Rate 20 kbps
@315MHz(6) <700
Occupied Bandwidth
@433.92MHz(6) <1000
kHz
VCO Section
@ 100kHz from Carrier 76
315MHz Single-Side Band Phase Noise
@ 1000kHz from Carrier 79
dBc/Hz
@ 100kHz from Carrier 72
433.92MHz Single-Side Band Phase Noise
@ 1000kHz from Carrier 81
dBc/Hz
Notes:
1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
4. Measured using Test Circuit in Figure 2.
5. Dependent on crystal
6. RBW = 100kHz, OBW measured at 20dBc.
Micrel, Inc. MICRF113
November 2010 4 M9999-112310
Electrical Characteristics(4) (Continued)
VDD = 3.0V, TA = 25°C, FreqREFOSC = 13.560MHz. Bold values indicate –40°C to 85°C unless otherwise noted. 2kbps bit rate, 50 load.
Parameter Condition Min. Typ. Max. Units
Reference Oscillator Section
XTLIN, XTLOUT Pin capacitance 2 pF
External Capacitance From each side of the crystal to
GND 18 pF
Oscillator Startup Time(5) Crystal: HC49S 300 µs
Digital / Control Section
Output Blanking VDD transition from LOW to HIGH 500 µs
High (VIH) 0.8 × VDD
Digital Input ASK Pin
Low (VIL) 0.2 × VDD
V
High (VIH) 0.05
Digital Input Leakage Current ASK Pin Low (VIL) 0.05
µA
Undervoltage Lock Out (UVLO) 1.6 V
ADJUST R7 TO VARY OUTPUT (:7) POWER 5 > > .n '2 S E 9 E c. u D ; J3 caNp w 5352‘s; SMA NPG‘_| % NP (4 M/suwl _ _ _ V _ 2 D“ v 4 ‘7“ 2g 04 NP R1 mom van 3 5 MP 5 2 : cs J4 V . mm vss A 1.8pF(82pF) J2 CONS 1 a W AGK PAouT' ‘ i 2 ASK L2 3 aan (32an 5 z 06 07 R2 011 V NP 6,8pF18 ZpF) mom Np c—lfll—o — q 015 T = ’ g NI" .0 = _ 8 v C18 0; ”PF E VALUES IN PARANTHESIS s g ARE FOR 315MHz m NP : NOT PLACED
Micrel, Inc. MICRF113
November 2010 5 M9999-112310
Test Circuit
Figure 2. MICRF113 Test Circuit with 50 Output
Ixnzrsn vona w nuns»: SWHBVS nau a Mm 5w w: R.» 2a 4% m y as 7mg AS v.2» m m 43/ m :3 r mum vno , 3 w nsm mnqwnh Mm :15 2: m m m £1: Rum an a x m um um m m 45/ m s2 sx Is in Crnlcr 1 w, . w . y mum WD=3W mD=ssna nsmnksvs Mm mm M 2m £1: Rum m a 4m 45 Pm m m 45/ am H-nmmn m a as m. Fund-Hula! m s2 sx :[ in Sim 1 m4: mlarsa www mn=e w as» w: W A m see an m 2n ASn Rum m as runs: 45 Pm m m 45/ m s2 sx :[ in Crnlcr l l 1 mum WD=3W vnDrssna nsmnksvs 4 MM :15 m M 2m £1: Rum m a 4m 45 Pm m m 45/ 2m Numeric L. 4: as m. rummm: m s2 sx :[ in sun; mum WD=3W nsmvm shit! m1 175: m M 2m £1: Rum m a 4m um um m m 45/ Sta-Au um u‘ s2 sx Is in Crnlcr 1 w,
Micrel, Inc. MICRF113
November 2010 6 M9999-112310
Typical Characteristics MICRF113 50 Test Board
315MHz OBW, ASK = 2kbps
315MHz OBW, ASK = 20kbps
CW Max Power @ 3V, 315MHz(1)
RF Spectrum 2nd Harmonic; Fundamental at 315MHz
RF Spectrum 3rd Harmonic; Fundamental at 315MHz
315MHz, Power Level at Space,
VDD = 3.0V, ASK = 2kbps, 62dBm
mum WD=3W nsmvm m1 m: m M 2m £1: Rum m a x :53 um um m m 45/ u‘ s2 sx Is in ASK-IKBFS Crnlcr 1 w: w u w» >4 u mum WD=3W nsmvm a mu m w M 2m £1: Rum m a 7315; 45 Pm m m 45/ m s2 sx :[ in Crnlcr 1 w: W . k mum WD=3W nsm a mu m w M 2m £1: Rum m m 74395 45 Pair m m 45/ m :2 :x F: M Crnlcr 1 w: .w . k mum WD=3W mam»: M 1m us M 2m £1: Rum m a x 34: um um m m 45/ u‘ s2 sx Is in Crnlcr 1 w: w u w» >4 u . A nnaryavnmzevnswwsv: . ., mm 1mm M 2m £1: Mann: ‘5” ‘5“ dams Pm m m 45/ m s2 sx :[ in Crnlcr 1 w: «m L . k mum WD=3W nsm M 2m £1: Rum m a, Pair m m 45/ m :2 :x F: M Crnlcr 1 w: «m L . k .
Micrel, Inc. MICRF113
November 2010 7 M9999-112310
Typical Characteristics MICRF113 50 Test Board (Continued)
315MHz, Zero Span , ASK = 2kbps
315MHz, Zero Span, ASK = 20kbps
315MHz, Phase Noise, ASK = 2kbps,
100kHz Offset, –75.59dBc/Hz
315MHz, Phase Noise, ASK = 2kbps,
1MHz Offset, –78.99dBc/Hz
315MHz, Phase Noise, ASK = CW,
100kHz Offset, –70.96dBc/Hz
315MHz, Phase Noise, ASK = CW,
1MHz Offset, –76.72dBc/Hz
mum Wu m m £1: Pm m m 45/ a Mm 515 w ,m m m s2 sx Is in Crnlcr mum vno = 3 w w; momma Mm 433 as m m m £1: Rum an a a 122 um um m m 45/ m s2 sx :[ in mum vno w mavs mwam 4 MM m m M 2m £1: Rum m a 75323 45 Pm m m 45/ m m m s2 sx :[ in sm mm} m4: Min—L—VW—MMLML w mavs mwam aBN a Mm 555 w Rum m a we 45 mum vno = 3 w mavs mwam 4 MM 4:2 m M 2m £1: Rum m a 42:3 45 Pm m m 45/ m m m s2 sx :[ in sun; WIKBDSSPREE m1 mm Rum an a 752122 dBm
Micrel, Inc. MICRF113
November 2010 8 M9999-112310
Typical Characteristics MICRF113 50 Test Board (Continued)
433.92MHz OBW, ASK = 2kbps
433.92MHz OBW, ASK = 20kbps
433.92MHz, CW Max Power @ 3V, ASK = 2kbps(1)
RF Spectrum 2nd Harmonic; Fundamental at 433.92MHz
RF Spectrum 3rd Harmonic; Fundamental at 433.92MHz
433.92MHz Power Level at Space,
VDD = 3.0V, ASK = 2kbps, -52dBm
murmunu mmm xmnmu m1 25mm: w m an Rum m a a m dEm M m m 45/ m :2 :x r: M nnarwvno musk Mammalian AHM mwz m m £1: Rum an a in 7: 45 Pair m m m :2 :x F: M mum vno , 3 w w; mew: Wm a mu m w m m £1: Rum an «E 7315445 Pm m m 45/ m s2 sx Is in Crnlcr w mavs m1 ems us Rum an a a 44‘ dBm mum vno = 3 w nsmu 1w: am a Mm m m m m £1: Rum an a 72m 45 Pm m m 45/ Crnlcr mum vno , 3 w w; w: am a Mm Lane M m m £1: Rum an a 7294 45 Pm m m 45/ m s2 sx Is in Crnlcr
Micrel, Inc. MICRF113
November 2010 9 M9999-112310
Typical Characteristics MICRF113 50 Test Board (Continued)
433.92MHz Zero Span, 2kbps
433.92ASK Zero Span at 20kbps
433.92MHz Phase Noise, ASK = CW,
100kHz Offset, 81.73dBc/Hz
433.92MHz Phase Noise, ASK = CW,
1MHz Offset, –78.49dBc/Hz
433.92MHz Phase Noise, ASK = 2kbps,
100kHz Offset, –71.64dBc/Hz
433.92MHz Phase Noise, ASK = 2kbps,
1MHz Offset, –79.4dBc/Hz
xTLOUT XTLIN 7— —————————— —| | PLL x 32 | | | XTAL 05C. I PFD DIVIDER I PA | | CHARGE I PUMP ’V I | | ENABLE .— AMPLITUDE CONTROL UNDER-VOLTAGE DETECT VDD vss PAOUT ASK
Micrel, Inc. MICRF113
November 2010 10 M9999-112310
Functional Diagram
Figure 3. MICRF113 Functional Block Diagram
of ri tern ta I— lal Oscillator Parameters for ASK O as refe r cry ’7 M‘CRHBASK
Micrel, Inc. MICRF113
November 2010 11 M9999-112310
Functional Description
Figure 3 is a functional block diagram of the MICRF113
transmitter. The MICRF113 is best described as a phase
locked transmitter. The MICRF113 system is partitioned
into five functional blocks:
Crystal oscillator
PLL×32
Power amplifier
Enable control
Undervoltage detection
Crystal Oscillator
The reference oscillator is crystal-based Pierce
configuration, designed to accept crystals with frequency
from 9.375MHz to 14.0625MHz.
Crystal Oscillator Parameters for ASK Operation
Figure 4 shows a reference oscillator circuit
configuration for ASK operation. The reference oscillator
is capable of driving crystals with ESR range from 20
to 300.
When the ESR of crystal is at 20, the crystal parameter
limits are:
ESR 20
Cpar 2 to 10pF
Cmo 10 to 40fF
ESR
XTLOUT
VSS
XTLIN
MICRF113 ASK
CRYSTAL MODEL
CLOAD
CPAR
CMO
CLOAD
Figure 4. Reference Oscillator ASK Operation
When the ESR of crystal is at 300, the crystal
parameter limits are:
ESR 300
C
PAR 2 to 5pF
C
MO 10 to 40fF
C
LOAD 10 to 30pF
PLL ×32
The function of PLL×32 is to provide a stable carrier
frequency for transmission. It is a “divide by 32” phase
locked loop oscillator.
Power Amplifier
The power amplifier serves two purposes: 1) to buffer
the VCO from external elements and 2) to amplify the
phase locked signal. The power amplifier can produce
+10dBm at 3V (typical).
Enable Control
Enable control gates the ASK data. It only allows
transmission when Lock, Amplitude and Under Voltage
Detect conditions are valid.
Undervoltage Detect
“Undervoltage detect” block senses operating voltage. If
the operating voltage falls below 1.6V, “undervoltage
detect” block will send a signal to “enable control” block
to disable the PA.
Micrel, Inc. MICRF113
November 2010 12 M9999-112310
Application Information
The MICRF113 is well suited to drive a 50 load,
monopole or a loop antenna. Figure 6 is an example of a
loop antenna configuration. Figure 6 also shows both
315MHz and 433.92MHz ASK configurations for a loop
antenna. Besides using a different crystal, Table 1 lists
modified values needed for the listed frequencies.
Frequency
(MHz)
L1
(nH)
C5
(pF)
L4
(nH)
C7
(pF) Y1 (MHz)
315.0 470 10 150 6.8 9.84375
433.92 820 12 68 4.7 13.5600
Table 1. Modified Values for Listed Frequencies
The reference design shown in Figure 6 has an antenna
optimized for using the matching network as described in
Table 1.
Power Amplitude Control Using External Resistor
R7 is used to adjust the RF amplitude output levels
which may be needed to meet compliance regulation. As
an example, the following tables list typical values of
conducted RF output levels and corresponding R7
resistor values for the 50 test board, as shown in
Figure 2. R7 of the TX113-1C Demo board using the
loop antenna can be adjusted for the appropriate
radiated field allowed by FCC or ETSI compliance.
Contact Micrel for suggested R7 values to meet FCC
and ETSI compliances.
50 Test Board, VDD = 3.0V
R7 () Output Power (dBm) IDD (mA)
0 10 12.3
75 8.5 11
100 8.0 10.5
500 3.0 7.3
1000 -2.0 5.9
Table 2. Output Power vs. External Resistor @ 315MHz
50 Test Board, VDD = 3.0V
R7 () Output Power (dBm) IDD (mA)
0 9.8 12.5
75 8.9 12
100 8.6 11.8
500 2.0 8.9
1000 3.0 7.3
Table 3. Output Power vs. External Resistor @ 433.92MHz
REFO c DTA . 5. an R7 c2 c1 moi mu r — «u r — m r 5 v ‘ 55v - 55VT MICRFmVMs 4 3 L‘ 47 xTLouT vm) 47mm 015 mm; 5 2 (:15 Np H mm vss H s ASK PAOUT ‘ A H ‘ ' V ' E Izchssov “Lg” g “up; 5W) usunw ‘ L5 | | n ANTENNA I I q, R2 w u; 3 “m“ 13560MH1 F _ Ag A375MH1): N :: = 013 cm 5 % C11 ca 2 18% 18pF NP NF V V
Micrel, Inc. MICRF113
November 2010 13 M9999-112310
Notes:
1. Components labeled NP are not placed.
2. Values in parenthesis apply only to 315MHz option.
3. Value of R7 is selected to vary the output power.
Figure 6. ASK 433.92MHz and 315MHz
1karevu Tx11aso owns: CONTROL *va vnu ' ASK INPUTTO ITX113 om mnmm my 2 unv WP nnms; N 012 1 mm (my—‘2 nn v vy—xn “mm“: 4 Mav 2am mus-n4 He at: httg://www.mxcrel.com
Micrel, Inc. MICRF113
November 2010 14 M9999-112310
Output Power ON-OFF Control
There are two ways to enable the PA output power.
First, by supplying the ASK signal with VDD applied
continuously, resulting in a Mark and Space RF output
condition. A second method involves applying both VDD
and ASK synchronously. The second method allows for
longer battery usage since the battery is disconnected
during non-activation. Figure 7 shows the RF output time
response since VDD and the ASK are applied to the
MICRF113. The RF output response, as a function of
VDD, is typically less then 1.25mSec. This measurement
was done using the circuitry shown in Figure 2.
Note: The ASK signal should never be applied before
VDD.
Figure 7. RF Output Response (VDD and ASK)
Output Matching Network
Part of the function of the output network is to attenuate
the second and third harmonics. When matching to a
transmit frequency, care must be taken both to optimize
for maximum output power, and to attenuate unwanted
harmonics.
Layout Issues
PCB Layout is a primary concern for achieving optimum
performance and consistent manufacturing results. Care
must used with the orientation of components to ensure
that they do not couple or decouple the RF signal. PCB
trace length should be short to minimize parasitic
inductance (1 inch ~ 20nH). For example, depending
upon inductance values, a 0.5 inch trace can change the
inductance by as much as 10%. To reduce parasitic
inductance, the practice of using wide traces and a
ground plane under the signal traces is recommended.
Vias with low value inductance should be used for
components requiring a connection-to-ground.
Antenna Layout
Directivity is affected by antenna trace layout. No ground
plane should be under the antenna trace. For consistent
performance, components should not be placed inside
the loop of the antenna. Gerber formats (see Figure 8,
for a suggested layout) can be obtained from the Micrel
web site at: http://www.micrel.com.
1315 <— can="" —=""> Una-n: own/n7 <— 06:]="" f—="" 1315="" —’="" hi="" 1315="" 0821="">
Micrel, Inc. MICRF113
November 2010 15 M9999-112310
Assembly Drawing Top Layer
Bottom Layer
Figure 8. PCB Demo Board
. . a w a a B E E 3 R7 '1 1 a 3 5 S an m a e MICRF113VM6 I 0 u 4 3 <5 xtlout="" vdd="" 1;="" c15="" npimf="" 5="" 2="" :="" cwsnp="" (="" refo="" c="" h="" mm="" vss="" h="" (="" day="" 5="" ask="" paout="" 1="" h="" we?“="" c5="" sfinh="" 12p:="" 50v="" ((sohh)="" (10pf="" 50v)="" 1="" ,="" i]="" §="" r2="" “12="" 3="" 100“}="" y1="" 4e="" 13="" sedmh="" z="" (s="" 4375mhs="" ::c’h="" np="" ::05="" nf="">< cm="" 2="" «an;="" 4="" 7pr="" 16="" 89f)="" v="" v="" .h="" van="" j2="" wsvmssv="" 1="" o——u="" external="" ref-05c="" 1="" sap—m)="" ground="" z="" c="" ground="" 2="" data="" 3="" c="" m)="" con="" 2="" con3="" v="" v="">
Micrel, Inc. MICRF113
November 2010 16 M9999-112310
Functional Description
Figure 8 shows the TX113-1c Demo Board PCB layout
and assembly (Gerber format). Figure 9 is a detailed
schematic of the TX113-1c. Note that components
labeled as NP (not placed) can be used to obtain
different configurations. Table 4 describes each header
pin connector used in the demo board.
Pin Function
Name Functional Description
J1-1 VDD 1.8V to 3.6V input voltage
J1-2 VSS Ground
J1-3 ASK Modulating Data Input
J2-1 REF-OSC External Reference Oscillator Input
J2-2 VSS Ground
Table 4. Demo Board Pin Names and Descriptions
Notes:
1. NP = Not Placed
2. Values in parenthesis apply only to 315MHz option.
3. R7 is selected to vary output power
Figure 9. TX113-1c Demo Board Schematic
www.mu ratacom www coHcrafl com www wshay com www hm com hr www mwcre‘xmm
Micrel, Inc. MICRF113
November 2010 17 M9999-112310
Bill of Materials (433.92MHz)
Item Part Number Manufacturer Description Qty.
C1 GRM21BR60J106K Murata(1) 10µF ±10%, 0805 capacitor 1
C2 GRM1885C1H101J Murata(1) 100pF ±5%, 0603 capacitor 1
C5 GRM1885C1H120J Murata(1) 12pF ±5%, 0603 capacitor 1
C6, C11, C16 Murata(1) (NP) 3
C7 GQM1875C2E4R7C Murata(1) 4.7pF ±0.25pF, 0603 capacitor 1
C10 GRM188R61C104K Murata(1) 0.1µF ±10%, 0603 capacitor 1
C13, C14 GRM1885C1H180J Murata(1) 18pF ±5%, 0603 capacitor 2
J1 TSHR-114-S-02-A-GT 3-pin header 1
L1 0805CS-471XJB Coilcraft(2) 470nH ±5%, 0805 wire-wound inductor 1
L4 0603CS-068NXJB Coilcraft(2) 68nH ±5%, 0603 wire-wound inductor 1
L5 ANTENNA LOOP (Part of PCB) PCB ANTENNA 1
R2 CRCW0603100KFKEA Vishay(3) 100k ±5%, 0603 resistor 1
R7 CRC06030000Z0EA Vishay(3) 0 ±5%, 0603 resistor 1
Y1 SA-13.5600-F-10-J-30-30-x
Hosonic
Industrial
Brazil(4)
13.560MHZ ±30ppm crystal 1
U1 MICRF113YM6 Micrel, Inc.(5) 300MHz to 450MHz +10dBm ASK
Transmitter in SOT23 1
Notes:
1. Murata Tel: www.murata.com.
2. Coilcraft.: www.coilcraft.com.
3. Vishay Tel: www.vishay.com.
4. Hosonic Industrial Brazil: www.hib.com.br
5. Micrel, Inc.: www.micrel.com.
www.mu ratacom www coHcrafl com www wshay com www hm com hr www mwcre‘xmm
Micrel, Inc. MICRF113
November 2010 18 M9999-112310
Bill of Materials (315MHz)
Item Part Number Manufacturer Description Qty.
C1 GRM21BR60J106K Murata(1) 10µF ±10%, 0805 capacitor 1
C2 GRM1885C1H101J Murata(1) 100pF ±5%, 0603 capacitor 1
C5 GRM1885C1H120J Murata(1) 10pF ±5%, 0603 capacitor 1
C6, C11, C16 Murata(1) (NP) 3
C7 GQM1875C2E4R7C Murata(1) 6.8pF ±0.25pF, 0603 capacitor 1
C10 GRM188R61C104K Murata(1) 0.1µF ±10%, 0603 capacitor 1
C13, C14 GRM1885C1H180J Murata(1) 18pF ±5%, 0603 capacitor 2
J1, J2 TSHR-114-S-02-A-GT 3-pin header 1
L1 0805CS-471XJB Coilcraft(2) 470nH ±5%, 0805 wire-wound inductor 1
L4 0603CS-R15XJB Coilcraft(2) 150nH ±5%, 0603 wire-wound inductor 1
L5 ANTENNA LOOP (Part of PCB) PCB ANTENNA 1
R2 CRCW0603100KFKEA Vishay(3) 100k ±5%, 0603 resistor 1
R7 CRC06030000Z0EA Vishay(3) 0 ±5%, 0603 resistor 1
Y1 SA-9.84375-F-10- J-30-30-x
Hosonic
Industrial
Brazil(4)
9.84375MHZ ±30ppm crystal 1
U1 MICRF113YM6 Micrel, Inc.(5) 300MHz to 450MHz +10dBm ASK
Transmitter in SOT23 1
Notes:
1. Murata Tel: www.murata.com
2. Coilcraft.: www.coilcraft.com.
3. Vishay Tel: www.vishay.com.
4. Hosonic Industrial Brazil: www.hib.com.br
5. Micrel, Inc.: www.micrel.com.
<— 1335="" _)=""><— slzi="" —=""> 1335 ) <— slzi="" —=""> nu unmm no.
Micrel, Inc. MICRF113
November 2010 19 M9999-112310
PCB Layout Recommendations (50 Test Board)
Assembly Drawing
Top Layer
<— 1335="" é="" t="" »m#m="" |v="">
Micrel, Inc. MICRF113
November 2010 20 M9999-112310
PCB Layout Recommendations (50 Test Board)
Bottom Layer
a who m 1%; E _o ggn _.‘o 950 TV? ‘ 1w ‘1 w m w M ,1 , \ [2:194:42 (nwus) q, . m a; , _ , ‘ , 7 l A —:-I L— {3933 ms (MAX) mm: mm 2501020 0-1.75 (1 an womA W L 0 500mm) (5 Pms’ mum! 119119 m! w m :2 ”a. m ' \afifiifix (2 plcl) M EB hug/[www.mmreLcom
Micrel, Inc. MICRF113
November 2010 21 M9999-112310
Package Information
Notes:
1. Dimensions and tolerances are in accordance with ANSI Y14.5M, 1982.
2. Package surface to be mirror finish.
3. Die is facing up for mold. Die is facing down for trim/form, that is, reverse trim/form.
4. The foot-length measuring is based on the gauge plane method.
5 Dimensions are exclusive of mold flash and gate burr.
6-Pin SOT (YM6)
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical impla
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully
indemnify Micrel for any damages resulting from such use or sale.
can nt
© 2008 Micrel, Incorporated.