Texas Instruments 的 ISO7220-21A/B/C/M 规格书

i TEXAS INSTRUMENTS GND‘
ISO722x Dual-Channel Digital Isolators
1 Features
1, 5, 25, and 150-Mbps Signaling Rate Options
Low Channel-to-Channel Output Skew;
1-ns Max
Low Pulse-Width Distortion (PWD); 1-ns Max
Low Jitter Content; 1 ns Typ at 150 Mbps
50 kV/μs Typical Transient Immunity
Operates with 2.8-V (C-Grade),
3.3-V, or 5-V Supplies
4-kV ESD Protection
High Electromagnetic Immunity
–40°C to +125°C Operating Range
Typical 28-Year Life at Rated Voltage
(see High-Voltage Lifetime of the ISO72x Family of
Digital Isolators and Isolation Capacitor Lifetime
Projection)
Safety-Related Certifications
VDE Basic Insulation with 4000-VPK VIOTM, 560
VPK VIORM per DIN VDE V 0884-11:2017-01
and DIN EN 61010-1 (VDE 0411-1)
2500 VRMS Isolation per UL 1577
CSA Approved for IEC 60950-1 and IEC
62368-1
2 Applications
Industrial Fieldbus
– Modbus
– Profibus
– DeviceNet Data Buses
Computer Peripheral Interface
Servo Control Interface
Data Acquisition
3 Description
The ISO7220x and ISO7221x family devices are dual-
channel digital isolators. To facilitate PCB layout, the
channels are oriented in the same direction in the
ISO7220x and in opposite directions in the ISO7221x.
These devices have a logic input and output buffer
separated by TI’s silicon-dioxide (SiO2) isolation
barrier, providing galvanic isolation of up to 4000 VPK
per VDE. Used in conjunction with isolated power
supplies, these devices block high voltage and isolate
grounds, as well as prevent noise currents on a data
bus or other circuits from entering the local ground
and interfering with or damaging sensitive circuitry.
A binary input signal is conditioned, translated to a
balanced signal, then differentiated by the capacitive
isolation barrier. Across the isolation barrier, a
differential comparator receives the logic transition
information, then sets or resets a flip-flop and the
output circuit accordingly. A periodic update pulse is
sent across the barrier to ensure the proper dc level of
the output. If this dc-refresh pulse is not received
every 4 μs, the input is assumed to be unpowered or
not being actively driven, and the failsafe circuit drives
the output to a logic high state.
The small capacitance and resulting time constant
provide fast operation with signaling rates available
from 0 Mbps (DC) to 150 Mbps (The signaling rate of
a line is the number of voltage transitions that are
made per second expressed in the units bps). The A-
option, B-option, and C-option devices have TTL input
thresholds and a noise filter at the input that prevents
transient pulses from being passed to the output of
the device. The M-option devices have CMOS VCC/2
input thresholds and do not have the input noise filter
and the additional propagation delay.
The ISO7220x and ISO7221x family of devices
require two supply voltages of 2.8 V (C-Grade), 3.3 V,
5 V, or any combination. All inputs are 5-V tolerant
when supplied from a 2.8-V or 3.3-V supply and all
outputs are 4-mA CMOS.
The ISO7220x and ISO7221x family of devices are
characterized for operation over the ambient
temperature range of –40°C to +125°C.
Device Information (1)
PART NUMBER PACKAGE BODY SIZE (NOM)
ISO7220x SOIC (8) 4.90 mm × 3.91 mm
ISO7221x
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
OUTx
GNDOGNDI
INx
VCCO
VCCI Isolation
Capacitor
VCCI and GNDI are supply and ground connections respectively
for the input channels.
VCCO and GNDO are supply and ground connections
respectively for the output channels.
Simplified Schematic
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q JULY 2006 REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 1
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
I TEXAS INSTRUMENTS
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................6
6 Specifications.................................................................. 6
6.1 Absolute Maximum Ratings........................................ 6
6.2 ESD Ratings............................................................... 7
6.3 Recommended Operating Conditions.........................8
6.4 Thermal Information....................................................8
6.5 Power Ratings.............................................................8
6.6 Insulation Specifications............................................. 9
6.7 Safety-Related Certifications.................................... 10
6.8 Safety Limiting Values...............................................10
6.9 Electrical Characteristics—5-V VCC1 and VCC2
Supplies.......................................................................11
6.10 Electrical Characteristics—5-V VCC1 and 3.3-V
VCC2 Supply.................................................................12
6.11 Electrical Characteristics—3.3-V VCC1 and 5-V
VCC2 Supply.................................................................13
6.12 Electrical Characteristics—3.3-V VCC1 and
VCC2 Supplies..............................................................14
6.13 Electrical Characteristics—2.8-V VCC1 and
VCC2 Supplies..............................................................14
6.14 Switching Characteristics—5-V VCC1 and VCC2
Supplies.......................................................................16
6.15 Switching Characteristics—5-V VCC1 and 3.3-V
VCC2 Supply.................................................................17
6.16 Switching Characteristics—3.3-VCC1 and 5-V
VCC2 Supplies..............................................................18
6.17 Switching Characteristics—3.3-V VCC1 and
VCC2 Supplies..............................................................19
6.18 Switching Characteristics—2.8-V VCC1 and
VCC2 Supplies..............................................................19
6.19 Insulation Characteristics Curves........................... 20
6.20 Typical Characteristics............................................ 21
7 Parameter Measurement Information.......................... 23
8 Detailed Description......................................................25
8.1 Overview................................................................... 25
8.2 Functional Block Diagram......................................... 25
8.3 Feature Description...................................................26
8.4 Device Functional Modes..........................................26
9 Application and Implementation.................................. 27
9.1 Application Information............................................. 27
9.2 Typical Application.................................................... 27
10 Power Supply Recommendations..............................29
11 Layout........................................................................... 29
11.1 Layout Guidelines................................................... 29
11.2 Layout Example...................................................... 29
12 Device and Documentation Support..........................30
12.1 Device Support....................................................... 30
12.2 Documentation Support.......................................... 30
12.3 Related Links.......................................................... 30
12.4 Receiving Notification of Documentation Updates..30
12.5 Support Resources................................................. 30
12.6 Trademarks............................................................. 31
12.7 Electrostatic Discharge Caution..............................31
12.8 Glossary..................................................................31
13 Mechanical, Packaging, and Orderable
Information.................................................................... 31
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision P (August 2018) to Revision Q (January 2021) Page
Removed nominal specifications in the RECOMMENDED OPERATING CONDITIONS table.......................... 8
Changes from Revision O (April 2017) to Revision P (August 2018) Page
Changed (VDE V 0884-10):2006-12 to DIN VDE V 0884-11:2017-01 throughout the document...................... 1
Changed CSA Approved for Component Acceptance Notice 5A and IEC 60950-1 to CSA Approved for IEC
60950-1 and IEC 62368-1 throughout the document......................................................................................... 1
Added the basic insulation working voltage for CSA in the Safety-Related Certifications table....................... 10
Changed the VDE certification number from 40016131 to 40047657 in the Safety-Related Certifications table
..........................................................................................................................................................................10
Changed the maximum propagation delay and pulse-width distortion in each Switching Characteristics table ..
16
Added ± 10% for the VCC1 and VCC2 voltages in the condition statement of the Switching Characteristics—5-V
VCC1 and VCC2 Supplies table ..........................................................................................................................16
Changed ISO722x to ISO7220 for all part numbers for the Channel-to-channel output skew parameter in
each Switching Characteristic table..................................................................................................................16
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
2Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS
Changes from Revision N (September 2015) to Revision O (April 2017) Page
Changed the Dissipation Characteristics table to Power Ratings. Combined the DIN V VDE V 0884-10 (VDE
V 0884-10):2006-12 Insulation Characteristics table IEC Package Characteristics, and IEC 60664-1 Ratings
Table in the Insulation Specifications table. Changed the Regulatory Information table to Safety-Related
Certifications ...................................................................................................................................................... 8
Deleted the maximum surge voltage, 4000 VPK for VDE in the Safety-Related Certifications table................ 10
Changed the CSA information in the Safety-Related Certifications table.........................................................10
Changes from Revision M (October 2014) to Revision N (September 2015) Page
Changed the VDE Cerification from: DIN EN 60747-5-5 (VDE 0884-5) to: DIN V VDE V 0884-10 (VDE V
0884-10):2006-12 throughout the document...................................................................................................... 1
Updated the Simplified Schematic to a higher quality version............................................................................1
Changed the max value of the IN and OUT voltage from 6 to VCC + 0.5 in the Absolute Maximum Ratings
table.................................................................................................................................................................... 6
Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table........................................... 9
Added the JEDEC package dimensions note in the IEC Package Characteristics table................................... 9
Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table........................................... 9
Added the DTI parameter to the IEC Package Characteristics table..................................................................9
Changed the DTI test condition From: IEC 60112 / VDE 0303 Part 1 To: DIN EN 60112 (VDE 0303-11); IEC
60112.................................................................................................................................................................. 9
Added = 150°C to insulation resistance test condition in the DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
Insulation Characteristics table. .........................................................................................................................9
Added table row with input side VCC = X to the ISO7220x or ISO7221x Function table.................................. 26
Changes from Revision L (January 2012) to Revision M (August 2014) Page
Changed the title of this data sheet to ISO722x Dual Channel Digital Isolators ................................................1
Added Pin Configuration and Functions section, Handling Rating table, Dissipation Ratings table, Feature
Description section, Device Functional Modes, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section, changed Thermal Information table ........................................1
Updated the Features section ............................................................................................................................1
Added per VDE to 4000 VPK in second sentence of Description .......................................................................1
Updated the Regulatory Information Table......................................................................................................... 6
Added the min and max values to the Storage temperature parameter in the Absolute Maximum Ratings
table.................................................................................................................................................................... 6
Changed in ROC table Max col, VIH row from VCC to 5.5 .................................................................................8
Changed the L(I01) parameter name to external clearance (CLR) and L(I02) to external creepage (CPG).
Also changed the input-to-output test voltage (VPR) parameter name to apparent charge (qpd) .......................9
Changed the Device Options table, Input Threshold column from ≠ symbol to ~ symbol 6 places ................. 26
Changed Isolation Glossary .............................................................................................................................30
Changes from Revision K (January 2010) to Revision L (January 2012) Page
Changed Feature From: Operates with 3.3-V or 5-V Supplies To: Operates with 2.8-V (C-Grade), 3.3-V or 5-V
Supplies.............................................................................................................................................................. 1
Changed Feature From: 4000-Vpeak Isolation, 560 Vpeak VIORM To: 4000-VPK VIOTM, 560 VPK VIORM per IEC
60747-5-2 (VDE 0884, Rev2) ............................................................................................................................ 1
Added device options to VCC in the RECOMMENDED OPERATING CONDITIONS table................................ 8
Changed Note: (1) in the RECOMMENDED OPERATING CONDITIONS table................................................ 8
Changed the CTI MIN value From: ≥175 V To: ≥400 V...................................................................................... 9
Updated the Regulatory Information table........................................................................................................ 10
Changed ICC1 and ICC2 test conditions in the 5-V table.................................................................................... 11
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 3
I TEXAS INSTRUMENTS
Changed Table Note: (1)...................................................................................................................................11
Changed ICC1 and ICC2 test conditions in the VCC1 at 5 V, VCC2 at 3.3 V table.................................................12
Changed Table Note: (1)...................................................................................................................................12
Changed ICC1 and ICC2 test conditions in the VCC1 at 3.3 V, VCC2 at 5 V table.................................................13
Changed Table Note (1)....................................................................................................................................13
Changed ICC1 and ICC2 test conditions in the VCC1 and VCC2 at 3.3 V table.....................................................14
Changed Table Note (1)....................................................................................................................................14
Added ELECTRICAL and Switching CHARACTERISTICS table for VCC1 and VCC2 at 2.8 V (ISO722xC-Only)
..........................................................................................................................................................................14
Changed VCC Undervoltage Threshold vs Free-Air Temperature ....................................................................21
Changed Failsafe Delay Time Test Circuit and Voltage Waveforms ............................................................... 23
Changes from Revision J (May 2009) to Revision K () Page
Changed the RECOMMENDED OPERATING CONDITIONS so that Note (2) is associated with all device
options in the Input pulse width and Signaling rate............................................................................................ 8
Changed Note (2) From: Typical signaling rate under ideal conditions at 25°C. To: Typical signaling rate and
Input pulse width are measured at ideal conditions at 25°C...............................................................................8
Changed column 2 of the AVAILABLE OPTIONS table From: Signaling Rate To: Max Signaling Rate...........26
Changes from Revision I (December 2008) to Revision J () Page
Changed ISO7221C Marked As column From: TI7221C To: I7221C in the AVAILABLE OPTIONS table....... 26
Changes from Revision H (May 2008) to Revision I () Page
Added "IEC 61010-1, IEC 60950-1 and CSA Approved" to the UL 1577 FEATURES bullet..............................1
Changes from Revision G (March 2008) to Revision H () Page
Added Note: (1) to the RECOMMENDED OPERATING CONDITIONS table.................................................... 8
Added Note: (1) to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V table................................11
Added Note: (1) to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V table........................ 12
Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V table........................ 13
Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V..................................... 14
Changes from Revision F (August 2007) to Revision G () Page
Added Part Numbers ISO7220B and ISO7221B to the data sheet.................................................................... 1
Added 5-Mbps Signaling rate to the FEATURES list.......................................................................................... 1
Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at
5-V table............................................................................................................................................................11
Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2
at 3.3 V table.....................................................................................................................................................12
Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V,
VCC2 at 5 V table...............................................................................................................................................13
Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at
3.3 V................................................................................................................................................................. 14
Added PROPAGATION DELAY vs FREE-AIR TEMPERATURE, ISO722xB, Propagation Delay vs Free-Air
Temperature, ISO722xB .................................................................................................................................. 21
Added Part Numbers ISO7220B and ISO7221B to the AVAILABLE OPTIONS table...................................... 26
Changes from Revision E (July 2007) to Revision F () Page
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table.. 16
Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table.... 16
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
4Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table
..........................................................................................................................................................................17
Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table
..........................................................................................................................................................................17
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table
..........................................................................................................................................................................18
Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table
..........................................................................................................................................................................18
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS table.............................................................19
Changed 3.3-VRMS Supply Current vs Signaling Rate - Re-scaled the Y-axis..................................................21
Changed 5-VRMS Supply Current vs Signaling Rate - New Curves..................................................................21
Changes from Revision D (June 2007) to Revision E () Page
Changed 3.3-VRMS Supply Current vs Signaling Rate - New Curves...............................................................21
Changed 5-VRMS Supply Current vs Signaling Rate - Re-scaled the Y-axis ....................................................21
Changes from Revision C (May 2007) to Revision D () Page
Changed Typical ISO7220x Circuit Hook-Up - Pin 2 (INA) label From: OUTPUT to INPUT............................ 28
Changes from Revision B (May 2007) to Revision C () Page
Added the Signaling rate values to the RECOMMENDED OPERATING CONDITIONS table...........................8
Changed the IEC 60664-1 RATINGS TABLE - Specification I-III test conditions From: Rated mains voltage
≤150 VRMS To: Rated mains voltage ≤300 VRMS. Added a row for the I-II specifications............................... 9
Added ISO722xM Jitter vs Signaling Rate cross reference to the Peak-to-peak eye-pattern jitter of the
SWITCHING CHARACTERISTICS table......................................................................................................... 16
Added Time-Dependent Dielectric Breakdown Test Results ........................................................................... 28
Changes from Revision A (August 2006) to Revision B () Page
Added the TYPICAL CHARACTERISTIC CURVES to the data sheet............................................................. 21
Added the PARAMETER MEASUREMENT INFORMATION to the data sheet................................................23
Added the APPLICATION INFORMATION section to the data sheet...............................................................27
Added the ISOLATION GLOSSARY section to the data sheet ........................................................................30
Changes from Revision * (July 2006) to Revision A () Page
Deleted "and CSA Apporved" from the UL 1577 FEATURES bullet...................................................................1
Added option A to the AVAILABLE OPTIONS table......................................................................................... 26
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 5
w TEXAS INSTRUMENTS 3333 3333 CCCK CCCC
5 Pin Configuration and Functions
1
2
3
45
6
7
8
GND2
INB
VCC2
VCC1
OUTB
GND1
OUTA
INA
ISOLATION
Figure 5-1. ISO7220x D Package 8-Pin SOIC Top View
1
2
3
45
6
7
8
GND2
INB
VCC2
VCC1
OUTB
GND1
INA
OUTA
ISOLATION
Figure 5-2. ISO7221x D Package 8-Pin SOIC Top View
Table 5-1. Pin Functions
PIN I/O DESCRIPTION
NAME ISO7220x ISO7221x
INA 2 7 I Input, channel A
INB 3 3 I Input, channel B
GND1 4 4 Ground connection for VCC1
GND2 5 5 Ground connection for VCC2
OUTA 7 2 O Output, channel A
OUTB 6 6 O Output, channel B
VCC1 1 1 Power supply, VCC1
VCC2 8 8 Power supply, VCC2
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage(2), VCC1, VCC2 –0.5 6 V
VIVoltage at IN, OUT –0.5 VCC + 0.5(3) V
IOOutput current –15 15 mA
TJMaximum junction temperature 170 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These ratings are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.
(2) All voltage values except differential I/O bus voltages are with respect to network ground pin and are peak voltage values.
(3) Maximum voltage must not exceed 6 V.
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
6Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS
6.2 ESD Ratings
VALUE UNIT
V(ESD)
Electrostatic
discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±4000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000 V
Machine Model, ANSI/ESDS5.2-1996 ±200 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 7
TEXAS INSTRUMENTS cm ccz .1 L
6.3 Recommended Operating Conditions
MIN NOM MAX UNIT
VCC Supply voltage(2), VCC1, VCC2
ISO722xA, ISO722xB, ISO722xM 3 5.5 V
ISO722xC 2.8 5.5
IOH High-level output current –4 mA
IOL Low-level output current 4 mA
tui Input pulse width(1)
ISO722xA 1 μs
ISO722xB 200
nsISO722xC 40
ISO722xM 6.67
1/tui Signaling rate(1)
ISO722xA 0 1000 kbps
ISO722xB 0 5
MbpsISO722xC 0 25
ISO722xM 0 150
VIH High-level input voltage ISO722xA, ISO722xB, ISO722xC 2 5.5 V
VIL Low-level input voltage ISO722xA, ISO722xB, ISO722xC 0 0.8 V
VIH High-level input voltage ISO722xM 0.7 VCC VCC V
VIL Low-level input voltage ISO722xM 0 0.3 VCC V
TJJunction temperature –40 150 °C
H External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification 1000 A/m
(1) Typical signaling rate and Input pulse width are measured at ideal conditions at 25°C.
(2) For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V.
For the 2.8-V operation, VCC1 or VCC2 is specified at 2.8 V.
6.4 Thermal Information
THERMAL METRIC(1)
ISO7220x
ISO7221x
UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance Low-K Thermal Resistance(2) 212 °C/W
High-K Thermal Resistance 122
RθJC(top) Junction-to-case (top) thermal resistance 69.1 °C/W
RθJB Junction-to-board thermal resistance 47.7 °C/W
ψJT Junction-to-top characterization parameter 15.2 °C/W
ψJB Junction-to-board characterization parameter 47.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
(2) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.
6.5 Power Ratings
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 150 Mbps 50% duty cycle square wave
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PDDevice power dissipation, ISO722xM 390 mW
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
8Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS
6.6 Insulation Specifications
PARAMETER TEST CONDITIONS VALUE UNIT
GENERAL
CLR External clearance(1) Shortest terminal-to-terminal distance through air 4 mm
CPG External creepage(1) Shortest terminal-to-terminal distance across the
package surface 4 mm
DTI Distance through the insulation Minimum internal gap (internal clearance) 0.008 mm
CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 400 V
Material group II
Overvoltage category
Rated mains voltage ≤150 VRMS I-IV
Rated mains voltage ≤300 VRMS I-III
Rated mains voltage ≤400 VRMS I-II
DIN VDE V 0884-11:2017-01(2)
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar) 560 VPK
VIOTM Maximum transient isolation voltage VTEST = VIOTM
t = 60 s (qualification), t = 1 s (100% production) 4000 VPK
qpd Apparent charge(3)
Method a: After I/O safety test subgroup 2/3, Vini =
VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10 s ≤5
pC
Method a: After environmental tests subgroup 1,
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.3 × VIORM, tm =
10 s
≤5
Method b1: At routine test (100% production) and
preconditioning (type test) Vini = VIOTM, tini = 1 s;
Vpd(m) = 1.5 × VIORM, tm = 1 s
≤5
CIO Barrier capacitance, input to output(4) VIO = 0.4 sin (4E6πt) 1 pF
RIO Isolation resistance, input to output(4)
VIO = 500 V, TA = 25°C >1012
ΩVIO = 500 V, 100°C ≤ TA ≤ 125°C >1011
VIO = 500 V at TS = 150°C >109
Pollution degree 2
Climatic category 40/125/21
UL 1577
VISO Withstand isolation voltage
VTEST = VISO = 2500 VRMS, t = 60 s (qualification);
VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100%
production)
2500 VRMS
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in
certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these
specifications.
(2) This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings
shall be ensured by means of suitable protective circuits.
(3) Apparent charge is electrical discharge caused by a partial discharge (pd).
(4) All pins on each side of the barrier tied together creating a two-terminal device
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 9
I TEXAS INSTRUMENTS
6.7 Safety-Related Certifications
VDE CSA UL
Certified according to DIN VDE V
0884-11:2017-01 and DIN EN 61010-1 (VDE
0411-1):2011-07
Certified according to IEC 60950-1 and IEC
62368-1
Recognized under UL 1577 Component
Recognition Program
Basic Insulation
Maximum Transient Overvoltage, 4000 VPK;
Maximum Repetitive Peak Isolation Voltage,
560 VPK
2000 VRMS Isolation rating
400 VRMS Basic insulation and 148 VRMS
Reinforced insulation working voltage per CSA
60950-1-07+A1+A2 and IEC 60950-1 2nd Ed.
+A1+A2.
300 VRMS Basic insulation working voltage per
CSA 62369-1-14 and IEC 62368-1:2014 Ed. 2.
Single protection, 2500 VRMS
Certificate number: 40047657 Master contract number: 220991 File number: E181974
6.8 Safety Limiting Values
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat
the die and damage the isolation barrier, potentially leading to secondary system failures.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS
Safety input, output, or supply
current
RθJA = 212°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C, see
Figure 6-1 124
mA
RθJA = 212°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C, see
Figure 6-1 190
TSSafety temperature 150 °C
(1) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-
air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-
to-air thermal resistance in the Section 6.4 table is that of a device installed on a high-K test board for leaded surface-mount packages.
The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature
plus the power times the junction-to-air thermal resistance.
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
10 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
TEXAS INSTRUMENTS cm ccz
6.9 Electrical Characteristics—5-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC1 VCC1 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 1 2 mA
ISO7221 quiescent, VI = VCC or 0 V, no load 8.5 17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz
input clock signal, no load 2 3
mA
ISO7221A, ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load 10 18
ISO7220C, ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load 4 9
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load 12 22
ICC2 VCC2 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 16 31 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 8.5 17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz
input clock signal, no load 17 32
mA
ISO7221A, ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load 10 18
ISO7220C, ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load 20 34
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load 12 22
VOH High-level output voltage IOH = –4 mA, See Figure 7-1 VCC – 0.8 4.6 V
IOH = –20 μA, See Figure 7-1 VCC – 0.1 5
VOL Low-level output voltage IOL = 4 mA, See Figure 7-1 0.2 0.4 V
IOL = 20 μA, See Figure 7-1 0 0.1
VI(HYS) Input voltage hysteresis 150 mV
IIH High-level input current IN from 0 V to VCC 10 μA
IIL Low-level input current IN from 0 V to VCC –10 μA
CIInput capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) 1 pF
CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 7-3 25 50 kV/μs
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 11
TEXAS INSTRUMENTS cm Vccz
6.10 Electrical Characteristics—5-V VCC1 and 3.3-V VCC2 Supply
VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC1 VCC1 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 1 2 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 8.5 17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input
clock signal, no load 2 3
mA
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load 10 18
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load 4 9
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load 12 22
ICC2 VCC2 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 8 18 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input
clock signal, no load 9 19
mA
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load 5 11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load 10 20
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load 6 12
VOH High-level output voltage
ISO7220x, ISO7221x (3.3-V side), IOH = –4 mA,
See Figure 7-1 VCC – 0.4
V
ISO7221x (5-V side), IOH = –4 mA, See Figure 7-1 VCC – 0.8
All devices, IOH = –20 μA, See Figure 7-1 VCC – 0.1
VOL Low-level output voltage IOL = 4 mA, See Figure 7-1 0.4 V
IOL = 20 μA, See Figure 7-1 0.1
VI(HYS) Input voltage hysteresis 150 mV
IIH High-level input current IN from 0 V to VCC 10 μA
IIL Low-level input current IN from 0 V to VCC –10 μA
CIInput capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) 1 pF
CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 7-3 15 40 kV/μs
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
12 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
TEXAS INSTRUMENTS cm Vccz
6.11 Electrical Characteristics—3.3-V VCC1 and 5-V VCC2 Supply
VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC1 VCC1 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 0.6 1 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load 1 2
mA
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load 5 11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load 2 4
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load 6 12
ICC2 VCC2 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 16 31 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 8.5 17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load 18 32
mA
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load 10 18
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load 20 34
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load 12 22
VOH High-level output voltage
ISO7220x and ISO7221x (5-V side), IOH = –4 mA, See Figure
7-1 VCC – 0.8
V
ISO7221x (3.3-V side), IOH = –4 mA, See Figure 7-1 VCC – 0.4
All devices, IOH = –20 μA, See Figure 7-1 VCC – 0.1
VOL Low-level output voltage IOL = 4 mA, See Figure 7-1 0.4
IOL = 20 μA, See Figure 7-1 0 0.1
VI(HYS) Input threshold voltage hysteresis 150 mV
IIH High-level input current IN from 0 V or VCC 10 μA
IIL Low-level input current IN from 0 V or VCC –10 μA
CIInput capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) 1 pF
CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 7-3 15 40 kV/μs
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 13
TEXAS INSTRUMENTS cm ccz
6.12 Electrical Characteristics—3.3-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC1 VCC2 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 0.6 1 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load 1 2
mA
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load 5 11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load 2 4
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load 6 12
ICC2 VCC2 supply current
ISO7220x quiescent, VI = VCC or 0 V, no load 8 18 mA
ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load 9 19
mA
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load 5 11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load 10 20
mA
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load 6 12
VOH High-level output voltage IOH = –4 mA, See Figure 7-1 VCC – 0.4 3
V
IOH = –20 μA, See Figure 7-1 VCC – 0.1 3.3
VOL Low-level output voltage IOL = 4 mA, See Figure 7-1 0.2 0.4
IOL = 20 μA, See Figure 7-1 0 0.1
VI(HYS) Input voltage hysteresis 150 mV
IIH High-level input current IN from 0 V or VCC 10 μA
IIL Low-level input current IN from 0 V or VCC –10 μA
CIInput capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) 1 pF
CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 7-3 15 40 kV/μs
(1) For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V.
6.13 Electrical Characteristics—2.8-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) 2.8-V operation is only specified
for ISO722xC with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMSLLLLG4)
written on top of each device can be used to identify year and month of production respectively.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC1 VCC1 supply current
ISO7220C quiescent, VI = VCC or 0 V, no load 0.4 0.9 mA
ISO7221C quiescent, VI = VCC or 0 V, no load 3.7 7.5
ISO7220C 25 Mbps, 12.5-MHz input clock signal, no load 1.5 3.5 mA
ISO7221C 25 Mbps, 12.5-MHz input clock signal, no load 4.5 10
ICC2 VCC2 supply current
ISO7220C quiescent, VI = VCC or 0 V, no load 6.8 15 mA
ISO7221C quiescent, VI = VCC or 0 V, no load 3.7 7.5
ISO7220C 25 Mbps, 12.5-MHz input clock signal, no load 9 17 mA
ISO7221C 25 Mbps, 12.5-MHz input clock signal, no load 4.5 10
VOH High-level output voltage IOH = –4 mA, See Figure 7-1 VCC – 0.6 2.55
V
IOH = –20 μA, See Figure 7-1 VCC – 0.1 2.8
VOL Low-level output voltage IOL = 4 mA, See Figure 7-1 0.25 0.6
IOL = 20 μA, See Figure 7-1 0 0.1
VI(HYS) Input voltage hysteresis 150 mV
IIH High-level input current IN from 0 V or VCC 10 μA
IIL Low-level input current IN from 0 V or VCC –10 μA
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
14 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS
VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) 2.8-V operation is only specified
for ISO722xC with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMSLLLLG4)
written on top of each device can be used to identify year and month of production respectively.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CIInput capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) 1 pF
CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 7-3 10 30 kV/μs
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 15
TEXAS INSTRUMENTS cm ccz
6.14 Switching Characteristics—5-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay ISO722xA, see Figure 7-1 280 405 600 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 18 ns
tPLH, tPHL Propagation delay ISO722xB, see Figure 7-1 42 55 70 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 3 ns
tPLH, tPHL Propagation delay ISO722xC, see Figure 7-1 22 32 42 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 2 ns
tPLH, tPHL Propagation delay ISO722xM, see Figure 7-1 6 10 16 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 0.5 1 ns
tsk(pp) Part-to-part skew (2)
ISO722xA 180
ns
ISO722xB 17
ISO722xC 10
ISO722xM 3
tsk(o) Channel-to-channel output skew (3)
ISO7220A 3 15
nsISO7220B 0.6 3
ISO7220C, ISO7220M 0.2 1
trOutput signal rise time See Figure 7-1 1 ns
tfOutput signal fall time 1 ns
tfs
Failsafe output delay time from input power
loss See Figure 7-2 3 μs
tjit(pp) Peak-to-peak eye-pattern jitter
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, See Figure 7-4, Figure 6-13 1
ns
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, See Figure 7-4 2
(1) Also referred to as pulse skew.
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
TEXAS INSTRUMENTS cm Vccz
6.15 Switching Characteristics—5-V VCC1 and 3.3-V VCC2 Supply
VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay ISO722xA, see Figure 7-1 285 410 585 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 18 ns
tPLH, tPHL Propagation delay ISO722xB, see Figure 7-1 45 58 75 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 3 ns
tPLH, tPHL Propagation delay ISO722xC, see Figure 7-1 25 36 48 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 2 ns
tPLH, tPHL Propagation delay ISO722xM, see Figure 7-1 7 12 20 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 0.5 1 ns
tsk(pp) Part-to-part skew (2)
ISO722xA 180
ns
ISO722xB 17
ISO722xC 10
ISO722xM 5
tsk(o) Channel-to-channel output skew (3)
ISO7220A 3 15
nsISO7220B 0.6 3
ISO7220C, ISO7220M 0.2 1
trOutput signal rise time See Figure 7-1 2 ns
tfOutput signal fall time 2 ns
tfs
Failsafe output delay time from input power
loss See Figure 7-2 3 μs
tjit(pp) Peak-to-peak eye-pattern jitter
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, See Figure 7-4, Figure
6-13
1
ns
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, See Figure 7-4 2
(1) Also referred to as pulse skew.
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 17
TEXAS INSTRUMENTS cm Vccz
6.16 Switching Characteristics—3.3-VCC1 and 5-V VCC2 Supplies
VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay ISO722xA, see Figure 7-1 285 395 605 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 22 ns
tPLH, tPHL Propagation delay ISO722xB, see Figure 7-1 45 58 75 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 4 ns
tPLH, tPHL Propagation delay ISO722xC, see Figure 7-1 25 36 48 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 3 ns
tPLH, tPHL Propagation delay ISO722xM, see Figure 7-1 7 12 21 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 0.5 1 ns
tsk(pp) Part-to-part skew (2)
ISO722xA 190
ns
ISO722xB 17
ISO722xC 10
ISO722xM 5
tsk(o) Channel-to-channel output skew (3)
ISO7220A 3 15
nsISO7220B 0.6 3
ISO7220C, ISO7220M 0.2 1
trOutput signal rise time See Figure 7-1 1 ns
tfOutput signal fall time 1 ns
tfs
Failsafe output delay time from input power
loss See Figure 7-2 3 μs
tjit(pp) Peak-to-peak eye-pattern jitter
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, see Figure 7-4, Figure 6-13 1
ns
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, see Figure 7-4 2
(1) Also referred to as pulse skew.
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
18 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
TEXAS INSTRUMENTS cm ccz cm ccz
6.17 Switching Characteristics—3.3-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay ISO722xA, see Figure 7-1 290 400 610 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 22 ns
tPLH, tPHL Propagation delay ISO722xB, see Figure 7-1 46 62 78 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 4 ns
tPLH, tPHL Propagation delay ISO722xC, see Figure 7-1 26 40 52 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1 3 ns
tPLH, tPHL Propagation delay ISO722xM, see Figure 7-1 8 16 25 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 0.5 1 ns
tsk(pp) Part-to-part skew(2)
ISO722xA 190
ns
ISO722xB 17
ISO722xC 10
ISO722xM 5
tsk(o) Channel-to-channel output skew (3)
ISO7220A 3 15
nsISO7220B 0.6 3
ISO7220C, ISO7220M 0.2 1
trOutput signal rise time See Figure 7-1 2 ns
tfOutput signal fall time 2 ns
tfs
Failsafe output delay time from input power
loss See Figure 7-2 3 μs
tjit(pp) Peak-to-peak eye-pattern jitter
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, See Figure 7-4, Figure
6-13
1
ns
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, See Figure 7-4 2
(1) Also referred to as pulse skew.
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
6.18 Switching Characteristics—2.8-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay ISO722xC, see Figure 7-1 26 45 65 ns
PWD Pulse-width distortion |tPHL – tPLH|(1) 1.5 5 ns
tsk(pp) Part-to-part skew(2) ISO722xC 12 ns
tsk(o) Channel-to-channel output skew (3) ISO7220C 0.2 5 ns
trOutput signal rise time See Figure 7-1 2 ns
tfOutput signal fall time 2 ns
tfs
Failsafe output delay time from input power
loss See Figure 7-2 4.6 μs
(1) Also referred to as pulse skew.
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 19
TEXAS INSTRUMENTS
6.19 Insulation Characteristics Curves
0
25
50
75
100
125
150
175
200
225
250
0 50 100 150 200
T -CaseTemperature-°C
C
SafetyLimitingCurrent-mA
V at3.6V
CC1,2
V at5.5V
CC1,2
Figure 6-1. Thermal Derating Curve for Limiting Current per VDE
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
20 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
l TEXAS INSTRUMENTS 5: 2m 15 p; ma Ismzmx um lSD722\IxICC"1 Isu12znx ‘m
6.20 Typical Characteristics
0
2
4
6
8
10
12
14
16
18
20
0 25 50 75 100
SignalingRate-Mbps
I -SupplyCurrent-mA
CC
T =25°C,
15pFLoad
A
ISO7220x ICC2
ISO7220x ICC1
ISO7221x ICC1&2
Figure 6-2. 3.3-VRMS Supply Current vs Signaling
Rate (Mbps)
0
6
12
18
22
28
30
0 25 50 75 100
SignalingRate-Mbps
I -SupplyCurrent-mA
CC
4
2
8
14
10
16
20
24
26
T =25°C,
15pFLoad
AISO7220x ICC2
ISO7220x ICC1
ISO7221x ICC1&2
Figure 6-3. 5-VRMS Supply Current vs Signaling
Rate (Mbps)
Temperature-°C
125
350
360
370
380
390
400
410
420
430
440
450
-40 -15 10 35 60 85 110
PropagationDelay-ns
VCC =3.3V
VCC =5V
15pFLoad
tpLH &tpHL
tpLH &tpHL
Figure 6-4. Propagation Delay vs Free-Air
Temperature, ISO722xA
45
50
55
60
65
70
-40 25 125
Temperature-°C
PropagationDelay-ns
V =3.3V
CC
t &t
PLH PHL
t &t
PLH PHL
V =5V
CC
T =25°C,
15pFLoad
A
Figure 6-5. Propagation Delay vs Free-Air
Temperature, ISO722xB
Temperature-°C
125
-40 -15 10 35 60 85 110
PropagationDelay-ns
VCC =3.3V
VCC =5V
15pFLoad
tpLH &tpHL
tpLH &tpHL
0
5
10
15
20
25
30
Figure 6-6. Propagation Delay vs Free-Air
Temperature, ISO722xC
Temperature-°C
125
-40 -15 10 35 60 85 110
PropagationDelay-ns
VCC =3.3V
VCC =5V
15pFLoad
tpLH &tpHL
tpLH &tpHL
0
5
10
15
20
Figure 6-7. Propagation Delay vs Free-Air
Temperature, ISO722xM
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 21
TEXAS INSTRUMENTS
Figure 6-8. ISO722xA, ISO722xB and ISO722xC
Input Voltage Low-to-High Switching Threshold vs
Free-Air Temperature
Figure 6-9. ISO722xM Input Voltage High-to-Low vs
Free-Air Temperature
Free-Air Temperature - °C
Power Supply Undervoltage Threshold - V
2.48
2.52
2.56
2.6
2.64
2.68
-40 -25 -10 5 20 35 50 65 80 95 110 125
V Rising
CC
V Falling
CC
Figure 6-10. VCC Undervoltage Threshold vs Free-
Air Temperature
V =5V
CC
15pFLoad
T =25°C
A
V -V
OUT
I -mA
OUT
V =3.3V
CC
0 2 4 6
-80
-70
-60
-50
-40
-30
-20
-10
0
Figure 6-11. High-Level Output Current vs High-
Level Output Voltage
V =5V
CC
15pFLoad
T =25°C
A
V -V
OUT
I -mA
OUT
V =3.3V
CC
0
10
20
30
40
50
60
70
0 1 2 3 4 5
Figure 6-12. Low-Level Output Current vs Low-
Level Output Voltage
0 50 100 150 200
0
200
400
600
800
1000
1200
1400
1600
1800
2000
V =V =5V
CC1 CC2
15pFLoad
T =25°C
A
SignalingRate-Mbps
Jitter − ps
V =V =3.3V
CC1 CC2
Figure 6-13. ISO722xM Jitter vs Signaling Rate
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
22 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
NSTRUMENTS
7 Parameter Measurement Information
IN OUT
VOCL
Input
Generator 50 W
VI
NOTE A NOTE B
V /2
CC
tf
tr
10%
90%
50%
0 V
50%
VI
tPLH tPHL
VOH
VOL
ISOLATION BARRIER
VO
V /2
CC
VCC
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO =
50 Ω.
B. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%.
Figure 7-1. Switching Characteristic Test Circuit and Voltage Waveforms
tfs
FAILSAFE HIGH
OUT
ISOLATION BARRIER
VCC
VI
CL
NOTE A
VO
VI
VO50%
VCC
0 V
VOH
VOL
2.7 V
IN = 0 V
A. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%.
Figure 7-2. Failsafe Delay Time Test Circuit and Voltage Waveforms
IN OUT
Isolation Barrier
EN
VCCO
CL
See Note A
S1
GNDOGNDI +±
VCM
+
±
VOH or VOL
C = 0.1 µF ±1% C = 0.1 µF ±1%
VCCI
Pass-fail criteria:
The output must
remain stable.
Copyright © 2016, Texas Instruments Incorporated
A. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%.
Figure 7-3. Common-Mode Transient Immunity Test Circuit
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 23
I TEXAS INSTRUMENTS
OUT
Tektronix
HFS9009
PATTERN
GENERATOR
IN
DUT
Tektronix
784D
VCC
0 V
V / 2
C C
Jitter
PRBS bit pattern run length is 216 – 1. Transition time is 800 ps.
Figure 7-4. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
24 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
{5‘ TEXAS INSTRUMENTS
8 Detailed Description
8.1 Overview
The isolator in theSection 8.2 is based on a capacitive isolation barrier technique. The I/O channel of the
ISO7220x and ISO7221x family of devices consists of two internal data channels, a high-frequency channel (HF)
with a bandwidth from 100 kbps up to 150 Mbps, and a low-frequency channel (LF) covering the range from 100
kbps down to DC. In principle, a single-ended input signal entering the HF-channel is split into a differential
signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into
transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a
NOR-gate flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the
flip-flop measures the durations between signal transients. If the duration between two consecutive transients
exceeds a certain time limit, (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to
switch from the high-frequency to the low-frequency channel.
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a
sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-
pass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the
output multiplexer.
8.2 Functional Block Diagram
OSC
PWM VREF
LPF
VREF
DCL
OUT
IN
0
1S
Isolation Barrier
Low t Frequency
Channel
(DC...100 kbps)
High t Frequency
Channel
(100 kbps...150 Mbps)
Copyright © 2016, Texas Instruments Incorporated
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 25
I TEXAS INSTRUMENTS
8.3 Feature Description
Table 8-1 provides an overview of the device features.
Table 8-1. Device Features
PART NUMBER MAXIMUM SIGNALING
RATE
INPUT
THRESHOLD
CHANNEL
DIRECTION
ISO7220A 1 Mbps ≈ 1.5 V (TTL)
(CMOS compatible)
Same direction
ISO7220B 5 Mbps ≈ 1.5 V (TTL)
(CMOS compatible
ISO7220C 25 Mbps ≈ 1.5 V (TTL)
(CMOS compatible)
ISO7220M 150 Mbps VCC/ 2 (CMOS)
ISO7221A 1 Mbps ≈ 1.5 V (TTL)
(CMOS compatible)
Opposite directions
ISO7221B 5 Mbps ≈ 1.5 V (TTL)
(CMOS compatible)
ISO7221C 25 Mbps ≈ 1.5 V (TTL)
(CMOS compatible)
ISO7221M 150 Mbps VCC/ 2 (CMOS)
8.4 Device Functional Modes
The ISO7220x and ISO7221x family of devices functional modes are listed in Table 8-2.
Table 8-2. ISO7220x or ISO7221x Function Table (1)
INPUT SIDE VCC OUTPUT SIDE VCC INPUT (IN) OUTPUT (OUT)
PU PU
H H
L L
Open H
PD PU X H
X PD X Undetermined
(1) PU = Powered Up (VCC ≥ 3.0 V), PD = Powered Down (VCC ≤ 2.5 V), X = Irrelevant, H = High
Level,
L = Low Level
OUT
8W
13 W
IN
750 kW
500 W
Input Output
VCC1 VCC1 VCC1
VCC2
Figure 8-1. Device I/O Schematics
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
26 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
{5‘ TEXAS INSTRUMENTS 1‘?” i 1% : 7 J7 l 1 __________ 4 J7—H— y—H— 3 —H1 inPWW—H—V; v E E E? a; aw
9 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and TI
does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes, as well as validating and testing their design
implementation to confirm system functionality.
9.1 Application Information
The ISO7220x and ISO7221x family devices use single-ended TTL or CMOS-logic switching technology. The
supply voltage range is from 3 V (2.8 V for C-grade) to 5.5 V for both supplies, VCC1 and VCC2. When designing
with digital isolators, because of the single-ended design structure, digital isolators do not conform to any
specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The
isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line
transceiver, regardless of the interface type or standard.
9.2 Typical Application
The ISO7221x family of devices can be used with Texas Instruments' mixed signal micro-controller, digital-to-
analog converter, transformer driver, and voltage regulator to create an isolated 4- to 20-mA current loop.
VCC1 VCC2
GND1 GND2
INA
8
7
6
4 5
4
XOUT
XIN
5
6
2
MSP430
G2132
OUTA
1
2
3
ISO7221
DVSS
DVCC
INB OUTB
P3.0
P3.1
11
12
10 F
VS
0.1 F
MBR0520L
MBR0520L
1:1.33
0.1 F
3
1
D2
SN6501
D1
VCC
4, 5
2
GND
3.3 V
IN
EN GND
OUT
1 5
23
TPS76333 10 F
3.3VISO
10 F
ISO-BARRIER
0.1 F 0.1 F
0.1 F
0.1 F
3
VD
COMA
BASELOW
10
8ERRLVL
DBACK
16
DIN
DAC161P997
OUT 9
C1
14
15
VA
COMD
2
C2
13
C3
12
3 × 22 nF
5
4
20 0.1 F
22
0.1 F 1 F
LOOP±
LOOP+
1
Figure 9-1. Isolated 4- to 20-mA Current Loop
9.2.1 Design Requirements
Unlike optocouplers, which require external components to improve performance, provide bias (or limit current),
the ISO7220x and ISO7221x devices require only two external bypass capacitors to operate.
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 27
I TEXAS INSTRUMENTS GND1 GND 2 100 Working Voltage, me (VPK)
9.2.2 Detailed Design Procedure
Figure 9-2 and Figure 9-3 show the hookup of a typical ISO7220x and ISO7221x circuit. The only external
components are two bypass capacitors.
1
2
3
4 5
6
7
8
ISO7220
VCC1 VCC 2
INB OUTB
GND 1 GND 2
INPUT OUTPUT
0.1mF
0.1mF
2 mm
max .
from
Vcc1
2 mm
max .
from
Vcc2
INA OUTA
INPUT OUTPUT
Figure 9-2. Typical ISO7220x Circuit Hook-Up
1
2
3
4 5
6
7
8
ISO7221
VCC1 VCC2
INB OUTB
GND 1 GND 2
INPUT OUTPUT
0.1mF
0.1mF
2 mm
max .
from
Vcc1
2 mm
max .
from
Vcc 2
INA
OUTA
INPUT
OUTPUT
Figure 9-3. Typical ISO7221x Circuit Hook-Up
9.2.3 Application Curve
At maximum working voltage, the isolation barrier of the ISO7220x and ISO7221x family of devices has more
than 28 years of life.
10
100
0 250 500 750 1000
VIORM at 560 V
28
880120
PK
Working Voltage, V (V )
IORM PK
Working Life (Years)
Figure 9-4. Time-Dependent Dielectric Breakdown Test Results
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
28 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS
10 Power Supply Recommendations
To help ensure reliable operation at all data rates and supply voltages, a 0.1-μF bypass capacitor is
recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the
supply pins as possible. If only a single primary-side power supply is available in an application, isolated power
can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments
SN6501 device. For such applications, detailed power supply design and transformer selection
recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies.
11 Layout
11.1 Layout Guidelines
A minimum of four layers are required to accomplish a low EMI PCB design (see Figure 11-1). Layer stacking
should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-
frequency signal layer.
Route the high-speed traces on the top layer to avoid the use of vias (and the introduction of the inductances)
and allow for clean interconnects between the isolator and the transmitter and receiver circuits of the data
link.
Place a solid ground plane next to the high-speed signal layer to establish controlled impedance for
transmission line interconnects and provide an excellent low-inductance path for the return current flow.
Place the power plane next to the ground plane to create additional high-frequency bypass capacitance of
approximately 100 pF/in2.
Route the slower speed control signals on the bottom layer to allow for greater flexibility as these signal links
usually have margin to tolerate discontinuities such as vias.
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to
the stack to keep it symmetrical. Adding a second plane system to the stack makes the stack mechanically
stable and prevents it from warping. The power and ground plane of each power system can be placed closer
together, thus increasing the high-frequency bypass capacitance significantly.
For detailed layout recommendations, refer to the Digital Isolator Design Guide.
11.1.1 PCB Material
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength
and stiffness, and the self-extinguishing flammability-characteristics.
11.2 Layout Example
10 mils
10 mils
40 mils
FR-4
0r ~ 4.5
Keep this space
free from planes,
traces, pads, and
vias
Ground plane
Power plane
Low-speed traces
High-speed traces
Figure 11-1. Recommended Layer Stack
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 29
I TEXAS INSTRUMENTS
12 Device and Documentation Support
12.1 Device Support
12.1.1 Development Support
For development support, refer to:
AC-mains LED Lighting with DALI DMX512 & Power Line Communications Reference Design
Industrial Servo Drive and AC Inverter Drive Reference Design
Low-Cost Single/Dual-Phase Isolated Electricity Measurement Reference Design
Noise Tolerant Capacitive Touch HMI Reference Design
Type 2 PoE PSE, 6kV Lightning Surge Reference Design
12.2 Documentation Support
12.2.1 Related Documentation
For related documentation, see the following:
Texas Instruments, DAC161P997 Single-Wire 16-bit DAC for 4- to 20-mA Loops data sheet
Texas Instruments, Digital Isolator Design Guide
Texas Instruments, High-Voltage Lifetime of the ISO72x Family of Digital Isolators application report
Texas Instruments, Isolation Glossary
Texas Instruments, MSP430G2x32 Mixed Signal Microcontroller data sheet
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet
Texas Instruments, TPS763xx Low-Power 150-mA Low-Dropout Linear Regulators data sheet
12.3 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 12-1. Related Links
PARTS PRODUCT FOLDER ORDER NOW TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
ISO7220A Click here Click here Click here Click here Click here
ISO7220B Click here Click here Click here Click here Click here
ISO7220C Click here Click here Click here Click here Click here
ISO7220M Click here Click here Click here Click here Click here
ISO7221A Click here Click here Click here Click here Click here
ISO7221B Click here Click here Click here Click here Click here
ISO7221C Click here Click here Click here Click here Click here
ISO7221M Click here Click here Click here Click here Click here
12.4 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
12.5 Support Resources
TI E2E support forums are an engineer's go-to source for fast, verified answers and design help straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
30 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
l TEXAS INSTRUMENTS
12.6 Trademarks
Profibus is a trademark of Profibus.
DeviceNet is a trademark of Open DeviceNet Vendors Association.
TI E2E is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
12.7 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
12.8 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 31
I TEXAS INSTRUMENTS
www.ti.com
PACKAGE OUTLINE
C
.228-.244 TYP
[5.80-6.19]
.069 MAX
[1.75]
6X .050
[1.27]
8X .012-.020
[0.31-0.51]
2X
.150
[3.81]
.005-.010 TYP
[0.13-0.25]
0 - 8 .004-.010
[0.11-0.25]
.010
[0.25]
.016-.050
[0.41-1.27]
.041
[1.04]
4X (0 -15 )
A
.189-.197
[4.81-5.00]
NOTE 3
B .150-.157
[3.81-3.98]
NOTE 4
4X (0 -15 )
SOIC - 1.75 mm max heightD0008B
SMALL OUTLINE INTEGRATED CIRCUIT
4221445/C 02/2019
NOTES:
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed .006 [0.15], per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
18
.010 [0.25] C A B
5
4
PIN 1 ID AREA
SEATING PLANE
.004 [0.1] C
SEE DETAIL A
TYPICAL
DETAIL A
SCALE 2.800
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
32 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
{5‘ TEXAS INSTRUMENTS
www.ti.com
EXAMPLE BOARD LAYOUT
.0028 MAX
[0.07]
ALL AROUND
.0028 MIN
[0.07]
ALL AROUND
(.213)
[5.4]
6X (.050 )
[1.27] (.217)
[5.5]
8X (.061 )
[1.55]
8X (.024)
[0.6]
(R.002 ) TYP
[0.05]
8X (.055)
[1.4]
8X (.024)
[0.6]
6X (.050 )
[1.27]
(R.002 )
[0.05]
TYP
SOIC - 1.75 mm max heightD0008B
SMALL OUTLINE INTEGRATED CIRCUIT
4221445/C 02/2019
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
METAL SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
EXPOSDE
METAL
OPENING
SOLDER MASK METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED
METAL
EXPOSED METAL SHOWN
LAND PATTERN EXAMPLE
SCALE:6X
SYMM
1
45
8
SEE
DETAILS
IPC-7351 NOMINAL
.150 [3.85] CLEARANCE / CREEPAGE
SYMM
HV / ISOLATION OPTION
.162 [4.1] CLEARANCE / CREEPAGE
SYMM
1
45
8
SEE
DETAILS
SYMM
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback 33
w TEXAS INSTRUMENTS 45mm www Ii com
www.ti.com
EXAMPLE STENCIL DESIGN
8X (.061 )
[1.55]
8X (.024)
[0.6]
6X (.050 )
[1.27]
(.213)
[5.4]
(R.002 ) TYP
[0.05]
8X (.055)
[1.4]
8X (.024)
[0.6]
6X (.050 )
[1.27]
(.217)
[5.5]
(R.002 )
[0.05]
TYP
SOIC - 1.75 mm max heightD0008B
SMALL OUTLINE INTEGRATED CIRCUIT
4221445/C 02/2019
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
HV / ISOLATION OPTION
.162 [4.1] CLEARANCE / CREEPAGE
BASED ON .005 INCH [0.127 MM] THICK STENCIL
SOLDER PASTE EXAMPLE
SCALE:6X
SYMM
SYMM
1
45
8
IPC-7351 NOMINAL
.150 [3.85] CLEARANCE / CREEPAGE
SYMM
SYMM
1
45
8
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021 www.ti.com
34 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated
I TEXAS INSTRUMENTS Samples Samples Samples Samples Samples Samples Samples Samples Samples Sample: Sample: Samples Samples Samples Samples Samples Samples Samples Samples Samples
PACKAGE OPTION ADDENDUM
www.ti.com 13-Aug-2021
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
ISO7220AD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A
ISO7220ADG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A
ISO7220ADR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A
ISO7220ADRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A
ISO7220BD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B
ISO7220BDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B
ISO7220BDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B
ISO7220BDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B
ISO7220CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C
ISO7220CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C
ISO7220MD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M
ISO7220MDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M
ISO7220MDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M
ISO7220MDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M
ISO7221AD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A
ISO7221ADG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A
ISO7221ADR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A
ISO7221ADRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A
ISO7221BD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B
ISO7221BDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B
I TEXAS INSTRUMENTS Samples Samples Samples Samples Sample: Sample: Samples Samples Samples
PACKAGE OPTION ADDENDUM
www.ti.com 13-Aug-2021
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
ISO7221BDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B
ISO7221CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C
ISO7221CDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C
ISO7221CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C
ISO7221CDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C
ISO7221MD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M
ISO7221MDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M
ISO7221MDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M
ISO7221MDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
I TEXAS INSTRUMENTS
PACKAGE OPTION ADDENDUM
www.ti.com 13-Aug-2021
Addendum-Page 3
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF ISO7220A, ISO7221A, ISO7221C :
Automotive : ISO7220A-Q1, ISO7221A-Q1, ISO7221C-Q1
NOTE: Qualified Version Definitions:
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
I TEXAS INSTRUMENTS REEL DIMENSIONS TAPE DIMENSIONS ’ I+Ko '«Pt» Reel DlameIer A0 Dimension designed to accommodate the component Width Bo Dimension designed to accommodate the component Iength K0 Dimension designed to accommodate the component thickness 7 w OveraH Wiotn ot the carrier Iape i P1 Pitch between successive cawty centers f T Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE DOODOOOD ,,,,,,,,,,, ‘ User Direcllon 0' Feed SprockeI Hoies Pockel Quadrams
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
ISO7220ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7220BDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7220CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7220MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7221ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7221BDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7221CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
ISO7221MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 30-Apr-2020
Pack Materials-Page 1
I TEXAS INSTRUMENTS TAPE AND REEL BOX DIMENSIONS
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
ISO7220ADR SOIC D 8 2500 350.0 350.0 43.0
ISO7220BDR SOIC D 8 2500 350.0 350.0 43.0
ISO7220CDR SOIC D 8 2500 350.0 350.0 43.0
ISO7220MDR SOIC D 8 2500 350.0 350.0 43.0
ISO7221ADR SOIC D 8 2500 350.0 350.0 43.0
ISO7221BDR SOIC D 8 2500 350.0 350.0 43.0
ISO7221CDR SOIC D 8 2500 350.0 350.0 43.0
ISO7221MDR SOIC D 8 2500 350.0 350.0 43.0
PACKAGE MATERIALS INFORMATION
www.ti.com 30-Apr-2020
Pack Materials-Page 2
‘J
www.ti.com
PACKAGE OUTLINE
C
.228-.244 TYP
[5.80-6.19]
.069 MAX
[1.75]
6X .050
[1.27]
8X .012-.020
[0.31-0.51]
2X
.150
[3.81]
.005-.010 TYP
[0.13-0.25]
0 - 8 .004-.010
[0.11-0.25]
.010
[0.25]
.016-.050
[0.41-1.27]
4X (0 -15 )
A
.189-.197
[4.81-5.00]
NOTE 3
B .150-.157
[3.81-3.98]
NOTE 4
4X (0 -15 )
(.041)
[1.04]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES:
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
18
.010 [0.25] C A B
5
4
PIN 1 ID AREA
SEATING PLANE
.004 [0.1] C
SEE DETAIL A
DETAIL A
TYPICAL
SCALE 2.800
Yl“‘+
www.ti.com
EXAMPLE BOARD LAYOUT
.0028 MAX
[0.07]
ALL AROUND
.0028 MIN
[0.07]
ALL AROUND
(.213)
[5.4]
6X (.050 )
[1.27]
8X (.061 )
[1.55]
8X (.024)
[0.6]
(R.002 ) TYP
[0.05]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
METAL SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
EXPOSED
METAL
OPENING
SOLDER MASK METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED
METAL
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X
SYMM
1
45
8
SEE
DETAILS
SYMM
www.ti.com
EXAMPLE STENCIL DESIGN
8X (.061 )
[1.55]
8X (.024)
[0.6]
6X (.050 )
[1.27] (.213)
[5.4]
(R.002 ) TYP
[0.05]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X
SYMM
SYMM
1
45
8
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated