Microchip Technology 的 ZL40260 规格书

G Microsemi Low Skew, Low Additive Jitter 2 x10 LVPECL Fanout Buffer W WWWWWV @m
Data Sheet
ZL40260
ZL40260
September 2017
© 2017 Microsemi Corporation
1
Low Skew, Low Additive Jitter 2 x10 LVPECL Fanout Buffer
Features
Two inputs accept any differential (LVPECL, HCSL,
LVDS, SSTL, CML) or single ended LVCMOS signal
Ten 2.5V/3.3V LVPECL outputs
Ultra-low additive jitter: 53fs for 125 MHz clock
measured in 12KHz to 20MHz band
Supports clock frequencies from 0 to 1.6GHz
Supports 2.5V or 3.3V power supplies
Embedded Low Drop Out (LDO) Voltage regulator
provides superior Power Supply Noise Rejection
Maximum output to output skew of 50ps
Maximum input to output delay of 1.2ns
Small input to output delay variation over voltage,
temperature and process of 0.34ns
Fast rise and fall times of 168ps
Phase noise floor below -160dB/Hz for 125MHz
clock
Applications
General purpose clock distribution
Low jitter clock trees
Logic translation
Clock and data signal restoration
Wired communications: OTN, SONET/SDH, GE, 10 GE,
FC and 10G FC
PCI Express generation 1/2/3/4 clock distribution
Wireless communications
High performance microprocessor clock distribution
Test equipment
Figure 1. Functional Block Diagram
Ordering Information
ZL40260LDG1 32 Pin QFN Trays
ZL40260LDF1 32 pin QFN Tape and Reel
ZL40260QGG1 32 pin eTQFP Trays
ZL40260QGF1 32 pin eTQFP Tape and Reel
Package size: 5 x 5 mm QFN and 7 x 7 mm eTQFP
-40C to +85C
-40C to +85C
CLK_SEL
IN0_p
IN0_n
IN1_p
IN1_n
OUT0_p
OUT0_n
OUT1_p
OUT1_n
OUT2_p
OUT2_n
OUT3_p
OUT3_n
OUT4_p
OUT4_n
OUT5_p
OUT5_n
OUT6_p
OUT6_n
OUT7_p
OUT7_n
OUT8_p
OUT8_n
OUT9_p
OUT9_n
Vbb
ZL40260
o Microsemi @w
Data Sheet
ZL40260
ZL40260
September 2017
© 2017 Microsemi Corporation
2
Table of Contents
Features ............................................................................................................................... 1
Applications .......................................................................................................................... 1
Table of Contents.................................................................................................................. 2
Pin Diagram .......................................................................................................................... 5
Pin Descriptions .................................................................................................................... 6
Functional Description........................................................................................................... 8
Clock Inputs .......................................................................................................................... 8
Clock Outputs ..................................................................................................................... 11
Termination of unused inputs and outputs ........................................................................... 13
Power Consumption ............................................................................................................ 13
Power Supply Filtering ........................................................................................................ 13
Power Supplies and Power-up Sequence ............................................................................ 13
AC and DC Electrical Characteristics .................................................................................. 13
Absolute Maximum Ratings ................................................................................................. 14
Recommended Operating Conditions .................................................................................. 14
DC Electrical Characteristics ............................................................................................... 15
QFN and eTQFP Package Outline ...................................................................................... 19
o Microsemi @m
Data Sheet
ZL40260
ZL40260
September 2017
© 2017 Microsemi Corporation
3
List of Figures
Figure 1. Functional Block Diagram ........................................................................................................................................... 1
Figure 2. Pin Diagram (not to scale) .......................................................................................................................................... 5
Figure 3. Input driven by a AC coupled LVPECL output .............................................................................................................. 8
Figure 4. Input driven by a DC coupled LVPEVCL output............................................................................................................ 8
Figure 5. Input driven by AC coupled LVDS output .................................................................................................................... 9
Figure 6. Input driven by 3.3V CML output ................................................................................................................................ 9
Figure 7. Input driven by 3.3V CML output with internal pull-ups ............................................................................................. 9
Figure 8. Input driven by SSTL output ...................................................................................................................................... 10
Figure 9. Input driven by single-ended output ......................................................................................................................... 10
Figure 10. Termination for 3.3V LVPECL outputs ....................................................................................................................... 11
Figure 11. Alternative termination for 3.3V LVPECL outputs ..................................................................................................... 11
Figure 12. Termination for 2.5V LVPECL output ........................................................................................................................ 11
Figure 13. Alternative termination for 2.5V LVPECL output ...................................................................................................... 12
Figure 14. Alternative termination for 2.5V LVPECL output ...................................................................................................... 12
o Microsemi @m
Data Sheet
ZL40260
ZL40260
September 2017
© 2017 Microsemi Corporation
4
Table 1 Pin Descriptions ................................................................................................................................................................................. 6
Table 2 Absolute Maximum Ratings* ........................................................................................................................................................... 14
Table 3 Recommended Operating Conditions* ............................................................................................................................................ 14
Table 4 DC Electrical Characteristics vdd_core=vddo=3.3V .......................................................................................................................... 15
Table 5 LVPECL DC characteristics; vdd_core=vddo=2.5V ............................................................................................................................ 15
Table 6 AC Electrical Characteristics 3.3V LVPECL Outputs ....................................................................................................................... 16
Table 7 AC Electrical Characteristics 2.5V LVPECL Output ......................................................................................................................... 17
Table 8 5x5mm QFN Package Thermal Properties ....................................................................................................................................... 18
Table 9 7x7mm eTQFP Package Thermal Properties .................................................................................................................................... 18
<3mmmmm dddddddd="" eidddeieidd="" dddddddd="" dddddddd="" dddddddd="" dddddddd="" dddddddd="" dddeeddd="" ©w="">
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
5
Pin Diagram
The device is packaged in a 5x5mm 32-pin QFN and 7x7mm 32-pin eTQFP.
Figure 2. Pin Diagram (not to scale)
Exposed GND Pad 3.15 x 3.15 mm
OUT3_n
OUT3_p
VDDO
OUT7_p
OUT7_n
OUT8_p
OUT8_n
OUT9_p
OUT9_n
VDDO
OUT6_n
OUT6_p
OUT5_n
OUT5_p
OUT4_n
OUT4_p
VSS
IN1_p
IN0_p
Pin#1
Corner
VDDO
OUT2_n
OUT2_p
OUT1_n
OUT1_p
OUT0_n
VDDO
OUT0_p
VDD
CLK_SEl
IN0_n
Vbb
1 2 3 4 5 6 7 8
9
10
11
12
13
14
15
16
1718192021222324
25
26
27
28
29
30
31
32
IN1_n
Exposed GND Pad 3.5 x 3.5 mm
OUT3_n
OUT3_p
VDDO
OUT7_p
OUT7_n
OUT8_p
OUT8_n
OUT9_p
OUT9_n
VDDO
OUT6_n
OUT6_p
OUT5_n
OUT5_p
OUT4_n
OUT4_p
VSS
IN1_p
IN0_p
Pin#1
Corner
VDDO
OUT2_n
OUT2_p
OUT1_n
OUT1_p
OUT0_n
VDDO
OUT0_p
VDD
CLK_SEl
IN0_n
Vbb
1 2 3 4 5 6 7 8
9
10
11
12
13
14
15
16
1718192021222324
25
26
27
28
29
30
31
32
IN1_n
32 pin QFN
32 pin eTQFP
Ca Microsemi ©w
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
6
Pin Descriptions
All device inputs and outputs are LVPECL unless described otherwise. The I/O column uses the following symbols: I
input, IPU input with 31k internal pull-up resistor, IPD input with 30k internal pull-down resistor, IPU/PD input
biased to VDD/2 with 60k internal pull-up and pull-down resistors (30 k equivalent), O output, P power supply
pin.
Table 1 Pin Descriptions
#
Name
I/O
Description
Input Reference
3
4
6
7
IN0_p
IN0_n
IN1_p
IN1_n
IPD
IPU/PD
IPD
IPU/PD
Differential/Single Ended References 0 and 1
Input frequency range 0Hz to 1.6GHz.
Non inverting inputs (_p) are pulled down with internal 30k pull-down resistors.
Inverting inputs (_n) are pulled up and pulled down with 60k internal resistors
(30k equivalent) to keep inverting input voltages at VDD/2 when inverting inputs
are left floating (device fed with a single ended reference).
Output Clocks
31
30
29
28
27
26
24
23
22
21
20
19
18
17
15
14
13
12
11
10
OUT0_p
OUT0_n
OUT1_p
OUT1_n
OUT2_p
OUT2_n
OUT3_p
OUT3_n
OUT4_p
OUT4_n
OUT5_p
OUT5_n
OUT6_p
OUT6_n
OUT7_p
OUT7_n
OUT8_p
OUT8_n
OUT9_p
OUT9_n
O
Ultra Low Additive Jitter Differential LVPECL Outputs 0 to 9
Output frequency range 0 to 1.6GHz
Control
2
CLK_SEL
IPD
Clock select input. Logic level at this pin selects one of input references.
When low selects IN0_p/IN0_n. When high selects IN1_p/IN1_n
Accepts LVPECL and LVCMOS logic levels.
This pin is pulled down with 30k resistor.
Ca Microsemi ©w
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
7
Input Biasing
5
Vbb
O
Bias Output Voltage Provides power output to bias IN0_n and/or IN1_n when input
are fed by a single ended LVPECL inputs or if differential inputs signal is AC
coupled (see application section).
Power and Ground
1
VDD
P
Positive Supply Voltage. Connect to 3.3V or 2.5V supply. VDD does not have to
be connected to the same voltage level as VDDO pins.
9
16
25
32
VDDO
P
Positive Supply Voltage for LVPECL Outputs Connect 3.3V or 2.5V. VDDO pins
do not have to be connected to the same voltage level as VDD pin.
8
VSS
P
Ground Connect to the ground
E-Pad
VSS
P
Ground Connect to the ground
G Microsemi
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
8
Functional Description
The ZL40260 is a 2x10 LVPECL clock fan out buffer shown in Figure 1with ten identical output clock drivers capable
of operating at frequencies up to 1600MHz.
The ZL40260 has two inputs. Each input can accept differential (LVPECL, SSTL, LVDS, HSTL, CML) or a single
ended LVPECL input or a CMOS input. The voltage level at CLK_SEL pin selects which input will be passed to the
output drivers. LVPECL input must be externally biased and terminated with resistors. The device provides biasing
voltage at the output pin Vbb which can minimize number of external resistors.
The ZL40260 is designed to fan out low-jitter reference clocks for wired or optical communications applications while
adding minimal jitter to the clock signal. An internal linear power supply regulator and bulk capacitors minimize
additive jitter due to power supply noise. The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is
guaranteed over the industrial temperature range -40°C to +85°C.
Clock Inputs
The following blocks diagram shows how to terminate different signals fed to the ZL40260 inputs. Please note that
value of AC coupling capacitors needs to be increased for frequencies below 10MHz to reduce voltage drop. When
driven from an AC coupled driver, the input voltage biasing is provided from Vbb output.
Figure 3. Input driven by a AC coupled LVPECL output
Figure 4. Input driven by a DC coupled LVPEVCL output
Z0
= 50
Z0
= 50
LVPECL
MSCC Device
200
10 nF
10 nF
200
Vbb
50 50
VDD
VDD
Z0
= 50
Z0
= 50
LVPECL
MSCC Device
VDD
VDD VDD
VDD
RUP RDWN
VDD
3.3V
2.5V
127 82
250 62.5
RUP RUP
RDWN RDWN
C9 Microsemi
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
9
Figure 5. Input driven by AC coupled LVDS output
Figure 6. Input driven by 3.3V CML output
Figure 7. Input driven by 3.3V CML output with internal pull-ups
MSCC Devic e
100
LVDS
10 nF
10 nF
Vbb
1 k 1 k
0.1 µF
Z0
= 50
Z0
= 50
VDD
VDD
50 50
Z0
= 50
Z0
= 50
CML
MSCC Devic e
10 nF
Vbb
1 k 1 k
10 nF
0.1 µ F
VDD
VDD VDD VDD
CML with built-in pullup
100
Z0
= 50
Z0
= 50
CML
MSCC Device
10 nF
Vbb
1 k 1 k
10 nF
0.1 µ F
VDD
VDD
G Microsemi E; kg E M:% % i
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
10
Figure 8. Input driven by SSTL output
Figure 9. Input driven by single-ended output
Figure 9 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be
100 each and Ro + Rs should be 50 so that the transmission line is terminated at both ends with characteristic
impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series
resistor RS should be increased. This will reduce the voltage swing at the input but this should be fine as long as the
input voltage swing requirement is not violated (Table 4). The source resistors of Rs = 270 could be used for
standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of
(3.3V/2) *(1/(270 + 50)) = 5.16mA.
For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence,
the ratio R1/R2 should be equal to the ratio R3/R4.
120 120
120 120
Z0
= 60
Z0
= 60
SSTL
MSCC Device
VDD
VDD
VDD
VDD
R1
R2
Z0
= 50
MSCC Device
Rs
0.1 µF
Ro
Ro + Rs = Z0
R3
R4
R1/R2 = R3/R4
Example:
R1 = R2 = 100
R3 = R4 = 1k
Rs = 270Ω for standard LVCMOS output
0.1 µF
Optional AC coupling
capacitor
VDD
VDD VDD VDD
C9 Microsemi
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
11
Clock Outputs
Termination for 3.3V LVPECL outputs is shown in following figures:
Figure 10. Termination for 3.3V LVPECL outputs
Figure 11. Alternative termination for 3.3V LVPECL outputs
Termination for 2.5V LVPECL outputs is shown in following figures:
Figure 12. Termination for 2.5V LVPECL output
250 250
62.5 62.5
Z0 = 50
Z0 = 50
LVPECL
MSCC Device
2.5V
LVPECL
2.5V
2.5V
2.5V
127 127
82 82
Z0
= 50
Z0
= 50
LVPECL
MSCC Device
LVPECL
3.3V 3.3V 3.3V
3.3V
Z0
= 50
Z0
= 50
LVPECL
MSCC Devic e
LVPECL
50 50
50
3.3V
3.3V
C9 Microsemi
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
12
Figure 13. Alternative termination for 2.5V LVPECL output
Figure 14. Alternative termination for 2.5V LVPECL output
The device is designed to drive differential input of semiconductor devices. In applications that use a transformer to
convert from the differential to the single ended output (for example driving an oscilloscope 50 input), a resistor
larger than 10 should be added at the center tap of the primary winding to achieve optimum jitter performance as
shown in Figure 15. This is to provide a nominal common mode impedance of 10 or higher which is typical for
differential terminations.
Figure 15. Driving a load via transformer
Z0 = 50
Z0 = 50
LVPECL
MSCC Device
LVPECL
50 50
18
2.5V
2.5V
Z0 = 50
Z0 = 50
LVPECL
MSCC Device
LVPECL
50 50
2.5V
2.5V
Z0
= 50
Z0
= 50
LVPECL
200
10 nF
10 nF
200
VDD
24.9
50
Add resistor to the ground or leave open
2 : 1Z0
= 50
O Microsemi ©w
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
13
COREDDCIVP
Termination of unused inputs and outputs
Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by 1K resistor. Unused outputs
should be left unconnected.
Power Consumption
The device total power consumption can be calculated as:
Where:
The core power. The current is specified in Table 3.
Output power where the per output current is
specified in Table 3.
Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors
from the power consumption.
VOH and VOL are the output high and low voltages
respectively for LVPECL output
VB is LVPECL bias voltage equal to VDD 2V
Power Supply Filtering
Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series
resistance (ESR) and minimum series inductance (ESL). For example 0402 X5R Ceramic Capacitors with 6.3V
minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce
the power noise from adjacent digital components on the board each power supply could be further insulated with low
resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise
generated from the device. Following figure shows recommended decoupling for each power pin.
Figure 16. Power Supply Filtering
Power Supplies and Power-up Sequence
The device has two different power supplies: VDD and VDDO which are mutually independent.
The device is not sensitive to the power-up sequence. For example commonly used sequence where higher voltage
comes up before or at the same time as the lower voltages can be used (or any other sequence).
AC and DC Electrical Characteristics
OCT PPP
LVPECLTD PPP 10
10uF 1uF 0.1uF
Ferrite Bead
Board Supply VDD or VDDO
 
50/50/
50/50/22
BBOLBBOH
BOLBOHLVPECL
VVVVVV
VVVVP
10 OUTDDOOIVP
C: Microsemi ©m
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
14
Absolute Maximum Ratings
Table 2 Absolute Maximum Ratings*
Parameter
Sym.
Min.
Typ.
Max.
Units
Notes
1
Supply voltage (3.3V)
VDD
-0.5
4.6
V
2
Supply voltage (2.5V)
VDD
-0.5
4.6
V
3
Storage temperature
TST
-55
125
°C
* Exceeding these values may cause permanent damage
* Functional operation under these conditions is not implied
* Voltages are with respect to ground (GND) unless otherwise stated
*
Recommended Operating Conditions
Table 3 Recommended Operating Conditions*
Characteristics
Sym.
Min.
Typ.
Max.
Units
Notes
1
Supply voltage 3.3V
VDD/ VDDO
3.135
3.30
3.465
V
2
Supply voltage 2.5V
VDD/ VDDO
2.375
2.50
2.625
V
3
Operating temperature
TA
-40
25
85
°C
4
Input voltage
VIN
-0.3
VDD + 0.3
V
5
Core current
ICORE
140
185
mA
6
Current per output
IOUT
22
28
mA
* Voltages are with respect to ground (GND) unless otherwise stated
* The device supports two power supply modes (3.3V and 2.5V)
C7 Microsemi ©m
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
15
DC Electrical Characteristics
Table 4 DC Electrical Characteristics VDD=VDDO=3.3V
Characteristics
Sym.
Min.
Typ.
Max.
Units
Notes
1
Output voltage reference (VBB)
VBB
1.6
1.9
2.2
V
2
Output high voltage
VOH
1.9
2.08
2.4
V
3
Output low voltage
VOL
1.2
1.36
1.7
V
4
Output differential swing**
VSW
0.6
0.72
0.9
V
5
Differential input common mode voltage for IN0_p/n and IN1_p/n
VCM
1
2
V
6
Differential input voltage difference for IN0_p/n and IN1_p/n
f 800MHz
VID
0.17
1.3
V
7
Differential input voltage difference for IN0_p/n and IN1_p/n
800MHz < f ≤ 1GHz
VID
0.22
1.3
V
8
Differential input voltage difference for IN0_p/n and IN1_p/n for
1GHz < f 1.2GHz
VID
0.29
1.3
V
9
Differential input voltage difference for IN0_p/n and IN1_p/n for
1.2GHz < f 1.4GHz
VID
0.39
1.3
V
10
Differential input voltage difference for IN0_p/n and IN1_p/n for
1.4GHz < f 1.6GHz
VID
0.5
1.3
V
11
Differential input leakage current for IN0_p/n and IN1_p/n (includes
current due to pull-up and pull-down resistors)
IIL
-150
150
µA
VI = 2V or 0V
12
Single ended input voltage for IN0_p and IN1_p
VSI
-0.3
2.7
V
13
Single ended input common mode voltage (IN0_p/n and IN1_p/n)
VSIC
1
2
V
14
Single ended input voltage swing for IN0_p and IN1_p
VSID
0.35
1.3
V
15
Input pull-up/ pull-down resistance for INx_n
RPU/RPD
60
k
16
Input pull-down resistance for INx_p
RPD
30
k
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets.
Table 5 LVPECL DC characteristics; VDD=VDDO=2.5V
Characteristics
Sym.
Min.
Typ.
Max.
Units
Notes
1
Output voltage reference (VBB)
VBB
1
1.25
1.50
V
2
Output high voltage
VOH
1.1
1.28
1.7
V
3
Output low voltage
VOL
0.4
0.57
0.9
V
4
Output differential swing**
VSW
0.6
0.71
0.9
V
5
Differential input common mode voltage for IN0_p/n and IN1_p/n
VCM
1
2
V
6
Differential input voltage difference for IN0_p/n and IN1_p/n
f 800MHz
VID
0.18
1.3
V
7
Differential input voltage difference for IN0_p/n and IN1_p/n
800MHz < f ≤ 1GHz
VID
0.25
1.3
V
8
Differential input voltage difference for IN0_p/n and IN1_p/n for
1GHz < f 1.2GHz
VID
0.39
1.3
V
9
Differential input voltage difference for IN0_p/n and IN1_p/n for
1.2GHz < f 1.4GHz
VID
0.7
1.3
V
10
Differential input voltage difference for IN0_p/n and IN1_p/n for
1.4GHz < f 1.6GHz
VID
0.94
1.3
V
11
Differential input leakage current for IN0_p/n and IN1_p/n (includes
current due to pull-up and pull-down resistors)
IIL
-150
150
µA
VI = 2V or 0V
12
Single ended input voltage for IN0_p and IN1_p
VSI
-0.3
2.7
V
13
Single ended input common mode voltage (IN0_p/n and IN1_p/n)
VSIC
1
2
V
14
Single ended input voltage swing for IN0_p and IN1_p
VSID
0.35
1.3
V
15
Input pull-up/ pull-down resistance for INx_n
RPU/RPD
60
k
16
Input pull-down resistance for INx_p
RPD
30
k
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets.
C: Microsemi ©m
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
16
Table 6 AC Electrical Characteristics 3.3V LVPECL Outputs
<
Item
Symbol
Parameter
-40°C
25°C
85°C
Units
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
1
fOUT
Output Frequency
0
1.6
0
1.6
0
1.6
GHz
2
tPD
Propagation Delay (from IN0_p/n)
860
968
1100
877
1004
1136
918
1052
1186
ps
3
tsk(o)
Output Skew
28
50
28
50
28
50
ps
4
tsk(pp)
Part-to-Part Skew
110
150
110
150
110
150
ps
5
Pn1K
Phase noise at 125MHz,
Offset=1KHz
-127.4
-123.7
-127.4
-123.8
-127.4
-123.2
dBc/Hz
6
Pn10K
Phase noise at 125MHz,
Offset=10KHz
-145.6
-142.8
-145.1
-139.9
-144.9
-140.8
dBc/Hz
7
Pn100K
Phase noise at 125MHz,
Offset=100KHz
-154.6
-151.2
-155.1
-150.6
-155.0
-150.4
dBc/Hz
8
Pn1M
Phase noise at 125MHz,
Offset=1MHz
-159.7
-158.3
-159.4
-157.7
-158.5
-156.1
dBc/Hz
9
Pn10M
Phase noise at 125MHz,
Offset=10MHz
-162.0
-160.8
-161.4
-160.6
-160.8
-160.0
dBc/Hz
10
Pn20M
Phase noise at 125MHz,
Offset=20MHz
-162.0
-160.9
-161.6
-160.8
-161.0
-160.5
dBc/Hz
11
tjit
Buffer Additive Phase Jitter, RMS
Carrier=125MHz
49
57
53
62
60
68
fs
12KHz-
20MHz
12
tR /tF
Output Rise/Fall Time (125MHz)
20% to 80%, zero track, CL=1pF
152
165
168
178
177
187
ps
13
Duty-
Cycle
Output differential duty cycle
50.5
51.5
50.5
51.8
50.5
51.6
%
C: Microsemi ©m
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
17
Table 7 AC Electrical Characteristics 2.5V LVPECL Output
<
Item
Symbol
Parameter
-40°C
25°C
85°C
Units
Units
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
1
fOUT
Output Frequency
0
1.6
0
1.6
0
1.6
GHz
2
tPD
Propagation Delay (from IN0_p/n)
820
954
1050
851
969
1093
893
1012
1139
ps
3
tsk(o)
Output Skew
28
50
28
50
28
50
ps
4
tsk(pp)
Part-to-Part Skew
110
150
110
150
110
150
ps
5
Pn1K
Phase noise at 125MHz; Offset=1KHz
-125.1
-121.0
-125.2
-120.8
-125.3
-120.9
dBc/Hz
6
Pn10K
Phase noise at 125MHz; Offset=10KHz
-143.7
-139.2
-143.5
-138.2
-143.9
-139.6
dBc/Hz
7
Pn100K
Phase noise at 125MHz; Offset=100KHz
-152.2
-149.3
-152.2
-148.9
-152.6
-149.1
dBc/Hz
8
Pn1M
Phase noise at 125MHz; Offset=1MHz
-158.6
-156.4
-158.5
-156.6
-157.9
-155.7
dBc/Hz
9
Pn10M
Phase noise at 125MHz; Offset=10MHz
-161.2
-159.4
-160.6
-159.3
-159.8
-158.3
dBc/Hz
10
Pn20M
Phase noise at 125MHz; Offset=20MHz
-161.3
-159.4
-160.8
-159.4
-160.0
-158.4
dBc/Hz
11
tjit
Buffer Additive Phase Jitter, RMS
Carrier=125MHz
52
69
58
74
67
79
fs 12KHz-
20MHz
12
tR /tF
Output Rise/Fall Time (125MHz) 20% to
80%, zero track, CL=1pF
102
105
108
154
130
173
ps
13
Duty-Cycle
Output differential duty cycle
50.3
51.5
50.4
51.4
50.3
51.3
%
C: Microsemi ©m
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
18
Table 8 5x5mm QFN Package Thermal Properties
Parameter
Symbol
Conditions
Value
Units
Maximum Ambient Temperature
TA
85
C
Maximum Junction Temperature
TJMAX
125
C
Junction to Ambient Thermal Resistance
JA
still air
25.2
C/W
1m/s airflow
20.6
2.5m/s airflow
18.8
Junction to Board Thermal Resistance
JB
10.9
C/W
Junction to Case Thermal Resistance
JC
18.9
C/W
Junction to Pad Thermal Resistance
JP
Still air
6.5
C/W
Junction to Top-Center Thermal Characterization
Parameter
JT
Still air
0.6
C/W
Table 9 7x7mm eTQFP Package Thermal Properties
Parameter
Symbol
Conditions
Value
Units
Maximum Ambient Temperature
TA
85
C
Maximum Junction Temperature
TJMAX
125
C
Junction to Ambient Thermal Resistance
JA
still air
17.6
C/W
1m/s airflow
11.6
2.5m/s airflow
10.2
Junction to Board Thermal Resistance
JB
6.9
C/W
Junction to Case Thermal Resistance
JC
13.6
C/W
Junction to Pad Thermal Resistance
JP
Still air
4.5
C/W
Junction to Top-Center Thermal Characterization
Parameter
JT
Still air
0.6
C/W
CI'OSGMI. i OM ii: , B , ETRLTQ aka a: 31:3 Emmobi E 5. a. 33.9 “E m, E M: E 1% i a: is; :1» 1, 9:9 my E .27 1 a): 5% £3 E 2 i ii. a; k, 7;; E: :25: E Ea a e: E9 u QEM 93a; m, a: 33.9 Q33; 2 ca: 15; a: E 755% N 9m EEC 4 43km: Gm uliuww m ddkmn mn,c$;\' m: EZE x mug: Hg: 1 BEE; : 5 £59; 3 52A Y: “Z c 33%;: z, 1 “:25 ,3 2E; ,_ way a: a “:31 2:9 0 m: G Em a u i \\ CCCCTCCCxfl Awqafxu q 3? mi 5; , xx? AH n / , m V S , \m ( 2:1 9 , :3 la ( g a \ m EHHEH Iva a: m‘ S©
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
19
QFN and eTQFP Package Outline
ICI'OSGITII. OM 9.5 .5322: E53: 5 NZ $925 $28 S©
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
20
o Microsemi O Microsemi: Power Minus m:mmc}._4- ©w
Data Sheet
ZL40260
ZL40260
Confidential
September 2017
© 2017 Microsemi Corporation
21
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 4,800 employees globally. Learn more at
www.microsemi.com.
© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA
: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales
: +1 (949) 380-6136
Fax
: +1 (949) 215-4996
E-mail
:
sales.support@microsemi.com
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is and with all faults, and the
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly
or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.