STIPN2M50T-HL 规格书

KyIW,
NDIP-26L in line
1
16
17
26
Features
IPM 2 A, 500 V, RDS(on) = 1.7 Ω, 3-phase MOSFET inverter bridge including
control ICs for gate driving
Optimized for low electromagnetic interference
3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pull-down/
pull-up resistors
Undervoltage lockout
Internal bootstrap diode
Interlocking function
Shutdown function
Comparator for fault protection against overtemperature and overcurrent
Op-amp for advanced current sensing
Optimized pinout for easy board layout
NTC for temperature control (UL 1434 CA 2 and 4)
Up to ±2 kV ESD protection (HBM C = 100 pF, R = 1.5 kΩ)
Applications
3-phase inverters for motor drives
Dish washers
Refrigerator compressors
Air-conditioning fans
Draining and recirculation pumps
Description
This SLLIMM (small low-loss intelligent molded module) nano provides a compact,
high-performance AC motor drive in a simple, rugged design. It is composed of six
MOSFETs and three half-bridge HVICs for gate driving, providing low
electromagnetic interference (EMI) characteristics with optimized switching speed.
The package is optimized for thermal performance and compactness in built-in motor
applications, or other low power applications where assembly space is limited. This
IPM includes an operational amplifier, completely uncommitted, and a comparator
that can be used to design a fast and efficient protection circuit. SLLIMM is a
trademark of STMicroelectronics.
Product status link
STIPN2M50T-HL
Product summary
Order code STIPN2M50T-HL
Marking IPN2M50T-HL
Package NDIP-26L
Packing Tube
SLLIMM-nano IPM, 3-phase inverter, 2 A, 1.7 Ω max., 500 V MOSFET
STIPN2M50T-HL
Datasheet
DS11753 - Rev 5 - March 2020
For further information contact your local STMicroelectronics sales office.
www.st.com
1Internal schematic diagram and pin configuration
Figure 1. Internal schematic diagram
NTC
GND(1 )
T/SD/OD (2)
VccW(3 )
HinW(4 )
LinW(5 )
OP+(6 )
OPOUT(7 )
OP-(8 )
VccV(9 )
HinV(10)
LinV(11 )
Cin(12)
VccU(13 )
HinU(14)
T/SD/OD(15)
LinU(16 ) (17)Vboot U
(18) P
(19)U,OUT U
(20)N U
(21)Vboot V
(22)V,OUT V
(23)N V
(24)Vboot W
(25)W,OUT W
(26)N W
GND
LIN
VCC
HVG
CIN
SD/OD
OUT
LVG
Vboot
HIN
GND
OPOUT
LIN
VCC
HVG
OP+
OP-
SD/OD
OUT
LVG
Vboot
HIN
GND
LIN
VCC
HVG
SD/OD
OUT
LVG
Vboot
HIN
GIPD120120170806SA
STIPN2M50T-HL
Internal schematic diagram and pin configuration
DS11753 - Rev 5 page 2/23
Table 1. Pin description
Pin Symbol Description
1 GND Ground
2 T/SD/OD NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)
3VCC W Low voltage power supply W phase
4 HIN W High-side logic input for W phase
5 LIN W Low-side logic input for W phase
6 OP+ Op-amp non inverting input
7OPOUT Op-amp output
8 OP- Op-amp inverting input
9VCC V Low voltage power supply V phase
10 HIN V High-side logic input for V phase
11 LIN V Low-side logic input for V phase
12 CIN Comparator input
13 VCC U Low voltage power supply for U phase
14 HIN U High-side logic input for U phase
15 T/SD/OD NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)
16 LIN U Low-side logic input for U phase
17 VBOOT U Bootstrap voltage for U phase
18 P Positive DC input
19 U, OUTUU phase output
20 NUNegative DC input for U phase
21 VBOOT V Bootstrap voltage for V phase
22 V, OUTVV phase output
23 NVNegative DC input for V phase
24 VBOOT W Bootstrap voltage for W phase
25 W, OUTWW phase output
26 NWNegative DC input for W phase
STIPN2M50T-HL
Internal schematic diagram and pin configuration
DS11753 - Rev 5 page 3/23
PIN 26 MU‘iULfLflJ‘i"JLF MN 17 /\ \ ,/ m \/ PIN 1 PIN 16
Figure 2. Pin layout (top view)
(*) (*)
(*) Dummy pin internally connected to P (positive DC input).
GADG130720161515FSR
PIN #1 ID
STIPN2M50T-HL
Internal schematic diagram and pin configuration
DS11753 - Rev 5 page 4/23
2Electrical ratings
2.1 Absolute maximum ratings
Table 2. Inverter part
Symbol Parameter Value Unit
VDSS MOSFET blocking voltage (or drain-source voltage) for each MOSFET (VIN(1)= 0 V) 500 V
± IDContinuous drain current each MOSFET (TC = 25 °C) 2 A
± IDP (2) Peak drain current each MOSFET (less than 1 ms) 4 A
PTOT Total power dissipation for each MOSFET (TC = 25 °C) TC = 25 °C 10.4 W
1. Applied between HINi, LINi and GND for i = U, V, W.
2. Pulse width limited by max. junction temperature.
Table 3. Control part
Symbol Parameter Min. Max. Unit
VOUT
Output voltage applied between OUTU, OUTV, OUTW -
GND Vboot - 21 Vboot + 0.3 V
VCC Low voltage power supply - 0.3 21 V
VCIN Comparator input voltage - 0.3 VCC + 0.3 V
Vop+ Op-amp non-inverting input - 0.3 VCC + 0.3 V
Vop- Op-amp inverting input - 0.3 VCC + 0.3 V
Vboot Bootstrap voltage - 0.3 620 V
VIN Logic input voltage applied between HIN, LIN and GND - 0.3 15 V
VT/SD/OD Open-drain voltage - 0.3 15 V
dVOUT/dt Allowed output slew rate 50 V/ns
Table 4. Total system
Symbol Parameter Value Unit
VISO Isolation withstand voltage applied between each pin and heat sink plate
(AC voltage, t = 60 s) 1000 Vrms
TJPower chip operating junction temperature range -40 to 150 °C
TCModule case operation temperature range -40 to 125 °C
STIPN2M50T-HL
Electrical ratings
DS11753 - Rev 5 page 5/23
2.2 Thermal data
Table 5. Thermal data
Symbol Parameter Value Unit
Rth(j-c) Thermal resistance junction-case single MOSFET 10.6 °C/W
Rth(j-c) Thermal resistance junction-ambient (per module) 22 °C/W
STIPN2M50T-HL
Thermal data
DS11753 - Rev 5 page 6/23
3Electrical characteristics
TJ = 25 °C unless otherwise specified.
3.1 Inverter part
Table 6. Static
Symbol Parameter Test conditions Min. Typ. Max. Unit
IDSS Zero-gate voltage drain current VDS = 500 V, VCC = 15 V, VBoot =
15 V 1 mA
V(BR)DSS Drain-source breakdown voltage VCC= Vboot = 15 V, VIN (1)= 0 V,
ID = 1 mA 500 V
RDS(on) Static drain-source turn-on
resistance
VCC = Vboot = 15 V, VIN(1)= 0 to 5
V, ID = 1.2 A 1.5 1.7 Ω
VSD Drain-source diode forward
voltage VIN(1)= 0 “logic state”, ID = 2 A 0.9 1.6 V
1. Applied between HINx, LINx and GND for x = U, V, W.
Table 7. Inductive load switching time and energy
Symbol Parameter Test conditions Min. Typ. Max. Unit
ton (1) Turn-on time
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(2)= 0 to 5 V,
IC = 1.2 A
(see Figure 4. Switching time
definition )
- 267 -
ns
tc(on) (1) Crossover time (on) - 153 -
toff (1) Turn-off time - 265 -
tc(off) (1) Crossover time (off) - 46 -
trr Reverse recovery time - 192 -
Eon Turn-on switching energy - 61 -
µJ
Eoff Turn-off switching energy - 4 -
1. tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the switching time of MOSFET
itself under the internally given gate driving conditions.
2. Applied between HINx, LINx and GND for x = U, V, W.
STIPN2M50T-HL
Electrical characteristics
DS11753 - Rev 5 page 7/23
5" Input UV LIN Vbooti Vbeot>Vcc RSD 7 WSW!» HIN HVG vcc OUT LVG —{ GND
Figure 3. Switching time test circuit
GIPD161120151702RV
Figure 4. Switching time definition
VDS IDID
VIN
tON
tC(ON)
VIN(ON) 10% ID 90% ID 10% VDS
(a) turn-on (b) turn-off
trr
100% ID 100% ID
VIN
VDS
tOFF tC(OFF)
VIN(OFF) 10% VDS 10% ID
AM09223V2
Figure 4. Switching time definition refers to HIN, LIN inputs (active high).
STIPN2M50T-HL
Inverter part
DS11753 - Rev 5 page 8/23
Mi
3.2 Control part
VCC = 15 V unless otherwise specified
Table 8. Low voltage power supply
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC_hys VCC UV hysteresis 1.2 1.5 1.8 V
VCC_thON VCC UV turn-ON threshold 11.5 12 12.5 V
VCC_thOFF VCC UV turn-OFF threshold 10 10.5 11 V
Iqccu Undervoltage quiescent supply
current
VCC = 15 V, T/SD/OD = 5 V; LIN = 0 V;
HIN = 0 V, CIN = 0 V 150 µA
Iqcc Quiescent current Vcc = 15 V, T/SD/OD = 5 V; LIN = 0 V;
HIN = 0 V, CIN = 0 V 1 mA
Vref Internal comparator (CIN)
reference voltage 0.5 0.54 0.58 V
Table 9. Bootstrapped voltage
Symbol Parameter Test conditions Min. Typ. Max. Unit
VBS_hys VBS UV hysteresis 1.2 1.5 1.8 V
VBS_thON VBS UV turn-ON threshold 11.1 11.5 12.1 V
VBS_thOFF VBS UV turn-OFF threshold 9.8 10 10.6 V
IQBSU
Undervoltage VBS quiescent
current
VBS < 9 V T/SD/OD = 5 V; LIN = 0 V and
HIN = 5 V; CIN = 0 V 70 110 µA
IQBS VBS quiescent current VBS = 15 V T/SD/OD = 5 V; LIN = 0 V
and HIN = 5 V; CIN = 0 V 200 300 µA
RDS(on) Bootstrap driver on-resistance LVG ON 120 Ω
Table 10. Logic inputs
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vil Low logic level voltage 0.8 V
Vih High logic level voltage 2.25 V
IHINh HIN logic “1” input bias current HIN = 15 V 20 40 100 µA
IHINI HIN logic “0” input bias current HIN = 0 V 1 µA
ILINI LIN logic “1” input bias current LIN = 15 V 20 40 100 µA
ILINh LIN logic “0” input bias current LIN = 0 V 1 µA
ISDh SD logic “0” input bias current SD = 15 V 200 350 500 µA
ISDI SD logic “1” input bias current SD = 0 V 3 µA
Dt Dead time See Figure 9. Dead time and
interlocking waveform definitions 180 ns
STIPN2M50T-HL
Control part
DS11753 - Rev 5 page 9/23
Table 11. Op-amp characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vio Input offset voltage Vic = 0 V, Vo = 7.5 V 6 mV
Iio Input offset current
Vic = 0 V, Vo = 7.5 V
4 40 nA
Iib Input bias current (1) 100 200 nA
VOL Low level output voltage RL = 10 kΩ to VCC 75 150 mV
VOH High level output voltage RL = 10 kΩ to GND 14 14.7 V
IoOutput short-circuit current
Source, Vid = +1 V; Vo = 0 V 16 30 mA
Sink, Vid = -1 V; Vo = VCC 50 80 mA
SR Slew rate Vi = 1 - 4 V; CL = 100 pF; unity gain 2.5 3.8 V/µs
GBWP Gain bandwidth product Vo = 7.5 V 8 12 MHz
Avd Large signal voltage gain RL = 2 kΩ 70 85 dB
SVR Supply voltage rejection ratio vs. VCC 60 75 dB
CMRR Common mode rejection ratio 55 70 dB
1. The direction of the input current is out of the IC.
Table 12. Sense comparator characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
Iib Input bias current VCIN = 1 V 1 µA
Vod Open-drain low level output
voltage Iod = 3 mA 0.5 V
RON_OD Open-drain low level output
resistance Iod = 3 mA 166 Ω
RPD_SD SD pull-down resistor (1) 125 kΩ
td_comp Comparator delay T/SD/OD pulled to 5 V through 100 kΩ
resistor 90 130 ns
SR Slew rate CL = 180 pF; Rpu = 5 kΩ 60 V/µs
tsd Shutdown to high / low-side
driver propagation delay VOUT = 0 V, Vboot = VCC, VIN = 0 to 3.3 V 50 125 200
ns
tisd
Comparator triggering to high /
low-side driver turn-off
propagation delay
Measured applying a voltage step
from 0 V to 3.3 V to pin CIN 50 200 250
1. Equivalent values are as a result of the resistances of three drivers in parallel.
STIPN2M50T-HL
Control part
DS11753 - Rev 5 page 10/23
%\ “H_Hiflvxfl—o —_ _----
Table 13. Truth table
Conditions
Logic input (VI)Output
T/SD/OD LIN HIN LVG HVG
Shutdown enable half-bridge tri-state L X (1) X(1) L L
Interlocking half-bridge tri-state H H H L L
0 “logic state” half-bridge tri-state H L L L L
1 “logic state” low-side direct driving H H L H L
1 “logic state” high-side direct driving H L H L H
1. X: do not care.
3.2.1 NTC thermistor
Figure 5. Internal structure of SD and NTC
T/SD/OD
V
Vbias
RPD_SD
NTC
LIN
HIN
VCC
GND CIN
LVG
OUT
HVG
Vboot
SD/OD
R SD
C SD
RPD_SD: equivalent value as result of resistances of three drivers in parallel.
STIPN2M50T-HL
Control part
DS11753 - Rev 5 page 11/23
Figure 6. Equivalent resistance (NTC//RPD_SD)
0
20
40
60
80
100
120
140
-40 -20 0 20 40 60 80 100 120
Equivalent Resistance (kΩ)
Temperature (°C)
Figure 7. Equivalent resistance (NTC//RPD_SD) zoom
0
2
4
6
8
10
12
14
70 80 90 100 110 120
Equivalent Resistance (kΩ)
Temperature (°C)
STIPN2M50T-HL
Control part
DS11753 - Rev 5 page 12/23
Figure 8. Voltage of T/SD/OD pin according to NTC temperature
2.0
2.5
3.0
3.5
4.0
4.5
5.0
25 50 75 100 125
VSD(V)
Temperature (°C)
VBias = 5 V
RSD = 2.2 kΩ
SD/OD: high
VBias = 3.3 V
RSD = 1.0 kΩ
STIPN2M50T-HL
Control part
DS11753 - Rev 5 page 13/23
coNTRm SIGNAL EDGES ovznuwsn Immomna . nun ms m anv-r mm arr . m anv-r amp-m arr k—‘—H‘ (“mamas Ymsnvzy fi—V. . Mums Ymsnvzy . , . comm SIGNALS EDGEs N." |—'—| y—| stcnonousfl : new m: m '—| Y ’—| m m ‘ m . F—H ink unv-r amp-m arr ' yak mur amp-n: arr ' ‘ (HALF-amnsztmdrnzy :‘ ’. Mmmmmm ;‘ ’7 . _ ‘ u» . ' ‘ CONTRO‘. SIGNALS EDGES NIH ' I I ‘ NOT ovmmm aur INSIDE THE new TIME new nu: CONYROL stNALs EDGES NOT avaxuwan‘ OUTSIDE YHE new nu: nlnEcY DRMNu we ' . um um ‘ wa . l‘ h w. «my Mm off -—> m dnvev Mm arr 4—H panama: msma n (erramnez manna n 1 hm' ' ovum ‘ we 5—" P—H‘ ‘ m. dnnv mm. arr '. .' u... «my mm. w' (mu—smacnmmzy (mu—amusemmnzy
3.3 Waveform definitions
Figure 9. Dead time and interlocking waveform definitions
INTERL
OCKING
INTERL
OCKING
INTERL
OCKING
G
STIPN2M50T-HL
Waveform definitions
DS11753 - Rev 5 page 14/23
SHUTDOWN cchun Var! ’ Van Va v, 7 v0 nan lu< a)="" s,="" a="" 5="">17; m (Mu VA =(Ra~,oul/Rsnl/Rpuu/l Rrrn)‘cs Ro~,an‘C:n '5 : (kw/flnuol/ ch) ‘ Cm //Rr snl/ Rm: Ramon/”(rust)” Rm) + Rx Vow RM an 7’. VM Rump + Rn: Rm 317/] "M: Van : m m' VanVm S15
4Shutdown function
The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection.
The comparator has an internal voltage reference VREF connected to the inverting input, while the non-inverting
input pin (CIN) can be connected to an external shunt resistor for current monitoring.
Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs,
whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which
fixes the disabling time.
For an effective design of the shutdown circuit, please refer to Application note AN4966.
Figure 10. Shutdown timing waveforms
_
RSD and CSD external circuitry must be designed to ensure
Please refer to AN4966 for further details.
* RNTC to be considered only when the NTC is internally connected to the T/SD/OD pin.
HIN or LIN
HVG or LVG
open -drain gate
(interna l)
VREF
CI N
PROTECT ION
SD/OD
AB
B
A
or
T/SD/OD
U V, W
GADG250120171515FSR
STIPN2M50T-HL
Shutdown function
DS11753 - Rev 5 page 15/23
—«h HH‘
5Application circuit example
Figure 11. Application circuit example
RS
RS
RS
ADC
M
PWR_GN D
SGN_GND
GND(1 )
T/SD/OD(15 )
HinW(4 )
VccW(3 )
OP+(6 )
LinW(5 )
VccV(9 )
OP-(8 )
OPOUT(7 )
Cin(12 )
LinV(11 )
HinV(10 )
HinU(14 )
VccU(13 )
LinU(16 )
T/SD/OD(2 )
(17)Vboot U
(18) P
(19)U,OUT U
(20)N U
(21)Vboot V
(22)V,OUT V
(23)N V
(24)Vboot W
(26)N W
(25)W,OUT W
R1
R1
R1
R1
R1
R1
R1 R2
R3
R4
R5
RSD
RSF
Rshunt
C1
C1
C1
C1
C1
C1
C3
C3
C3
C4
CSF
C OP
CSD
CbootU
CbootV
CbootW
Cvdc
VDC
Vcc DZ1
DZ2
DZ2
DZ2
5V/3.3V
5V/3.3V
Cvcc C2
GND
LIN
VCC
LVG
SD/OD
OUT
HVG
Vboot
HIN
MICROCONTROLLE R
Temp.
Monitoring
HIN U
LIN U
LIN V
HIN V
LIN W
HIN W
SD
ADC
NTC
+
-
+
-
GND
LIN
VCC
LVG
CIN
SD/OD
OUT
HVG
Vboot
HIN
GND
OPOUT
LIN
VCC
LVG
OP+
OP-
SD/OD
OUT
HVG
Vboot
HIN
GADG100620160912FSR
Application designers are free to use a different scheme according to the specifications of the device.
STIPN2M50T-HL
Application circuit example
DS11753 - Rev 5 page 16/23
5.1 Guidelines
Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull-down resistor is built-in for each input. To
avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC
filters (R1, C1) on each input signal is suggested. The filters should be with a time constant of about 100 ns
and placed as close as possible to the IPM input pins.
The use of a bypass capacitor CVCC (aluminum or tantalum) can reduce the transient circuit demand on the
power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a
decoupling capacitor C2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible
to the Vcc pin and in parallel with the bypass capacitor.
The use of an RC filter (RSF, CSF) is recommended to prevent protection circuit malfunction. The time
constant (RSF x CSF) should be set to 1 μs and the filter must be placed as close as possible to the CIN pin.
The SD is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally
connected between the SD pin and GND. The voltage VSD-GND decreases as the temperature increases,
due to the pull-up resistor RSD. In order to keep the voltage always higher than the high-level logic threshold,
the pull-up resistor should be set to 1 kΩ or 2.2 kΩ for 3.3 V or 5 V MCU power supply, respectively. The
capacitor CSD of the filter on SD should be fixed no higher than 3.3 nF in order to assure the SD activation
time τA ≤ 500 ns. Besides, the filter should be placed as close as possible to the SD pin.
The decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each
Cboot, filters high-frequency disturbance. Both Cboot and C3 (if present) should be placed as close as
possible to the U, V, W and Vboot pins. Bootstrap negative electrodes should be connected to U, V, W
terminals directly and separated from the main output wires.
To avoid overvoltage on the Vcc pin, a Zener diode (Dz1) can be used. Similarly on the Vboot pin, a Zener
diode (Dz2) can be placed in parallel with each Cboot.
The use of the decoupling capacitor C4 (100 to 220 nF, with low ESR and low ESL) in parallel with the
electrolytic capacitor Cvdc is useful to prevent surge destruction. Both capacitors C4 and Cvdc should be
placed as close as possible to the IPM (C4 has priority over Cvdc).
By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals
without an opto-couplers is possible.
Low-inductance shunt resistors have to be used for phase leg current sensing.
In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as
possible.
The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can
reduce the impact of power ground fluctuation.
These guidelines ensure the device specifications for application designs. For further details, please refer to the
relevant application note.
Table 14. Recommended operating conditions
Symbol Parameter Test conditions Min. Typ. Max. Unit
VPN Supply voltage Applied between P-Nu, Nv, Nw 300 400 V
VCC Control supply voltage Applied between VCC-GND 13.5 15 18 V
VBS High-side bias voltage
Applied between VBOOTx-OUT
for x = U, V, W
13 18 V
tdead
Blanking time to prevent
arm-short For each input signal 1 μs
fPWM PWM input signal
-40 °C < TC < 100 °C
-40 °C < TJ < 125 °C 25 kHz
TCCase operation temperature 100 °C
STIPN2M50T-HL
Guidelines
DS11753 - Rev 5 page 17/23
mm Pmmq BASE MHAL/ u L L P‘" 1 ' ' PM 15 A m b = MN :5 PW l7 Em \ L 1 mm m ‘ PW ‘ PM 15 e r\ PIN 25 L \
6Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
6.1 NDIP-26L in line package information
Figure 12. NDIP-26L in line package outline
8278949_7
STIPN2M50T-HL
Package information
DS11753 - Rev 5 page 18/23
Table 15. NDIP-26L in line mechanical data
Dim.
mm
Min. Typ. Max.
A 4.40
A1 0.80 1.00 1.20
A2 3.00 3.10 3.20
A3 1.70 1.80 1.90
A4 5.70 5.90 6.10
b 0.53 0.72
b1 0.52 0.60 0.68
b2 0.83 1.02
b3 0.82 0.90 0.98
c 0.46 0.59
c1 0.45 0.50 0.55
D 29.05 29.15 29.25
D1 0.55 0.77 1.00
D2 0.35 0.53 0.70
D3 29.55
E 12.35 12.45 12.55
e 1.70 1.80 1.90
e1 2.40 2.50 2.60
eB1 14.25 14.55 14.85
L 0.90 1.05 1.20
STIPN2M50T-HL
NDIP-26L in line package information
DS11753 - Rev 5 page 19/23
6.2 NDIP-26L packing information
Figure 13. NDIP-26L tube (dimensions are in mm)
Notes:
1- Material: extrused/transparent PVC 0.80 ±0.1 mm thickness 10E6~10E11/SQ PVC
2- General tolerance unless otherwise specified: ±0.25 mm
8313150_3
Table 16. Shipping details
Parameter Value
Base quantity 17 pieces
Bulk quantity 476 pieces
STIPN2M50T-HL
NDIP-26L packing information
DS11753 - Rev 5 page 20/23
Contents
1Internal schematic diagram and pin configuration ..................................2
2Electrical ratings ..................................................................5
2.1 Absolute maximum ratings.......................................................5
2.2 Thermal data ..................................................................6
3Electrical characteristics...........................................................7
3.1 Inverter part ...................................................................7
3.2 Control part ...................................................................9
3.2.1 NTC thermistor .........................................................11
3.3 Waveform definitions ..........................................................14
4Shutdown function ...............................................................15
5Application circuit example .......................................................16
5.1 Guidelines ...................................................................17
6Package information..............................................................18
6.1 NDIP-26L in line package information ............................................18
6.2 NDIP-26L packing information...................................................20
Revision history .......................................................................22
STIPN2M50T-HL
Contents
DS11753 - Rev 5 page 21/23
Revision history
Table 17. Document revision history
Date Revision Changes
13-Jul-2016 1 Initial release.
11-Oct-2016 2 Document status promoted from preliminary to production data.
12-Jan-2017 3 Updated Table 8: "Inductive load switching time and energy".
Minor text changes.
01-Feb-2017 4 Modified description on cover page
02-Mar-2020 5
Updated Section Features, Section Applications, Table 2. Inverter part, Table 3. Control part,
Table 4. Total system,Table 6. Static, Table 7. Inductive load switching time and energy, Section
3.2 Control part,Section 4 Shutdown function Section 5.1 Guidelines
STIPN2M50T-HL
DS11753 - Rev 5 page 22/23
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved
STIPN2M50T-HL
DS11753 - Rev 5 page 23/23