STMicroelectronics 的 STSPIN220 规格书

KyIW, vrqrpu : x a x m (mum)
Features
Operating voltage: from 1.8 to 10 V
Maximum output current: 1.3 Arms
• RDS(ON) HS + LS = 0.4 Ω typ.
Microstepping up to 1/256th of a step
Current control with programmable off-time
Full protection set
Non-dissipative overcurrent protection
Short-circuit protection
Thermal shutdown
Energy saving and long battery life with standby consumption less than 80 nA
Applications
Battery-powered stepper motor applications such as:
Pop-up camera control for smartphones
Point of sale (POS) devices
Portable printers
PC peripherals and accessories
• Robotics
• Toys
Reflex cameras
Description
The STSPIN220 is a stepper motor driver which integrates, in a small VFQFPN 3 x 3
x 1.0 mm package, both control logic and a low RDS (on) power stage.
The integrated controller implements PWM current control with fixed OFF time and a
microstepping resolution up to 1/256th of a step.
The device is designed to operate in battery-powered scenarios and can be forced
into a zero-consumption state, allowing a significant increase in battery life.
The device offers a complete set of protection features including overcurrent,
overtemperature and short-circuit protection.
Product status link
STSPIN220
Product summary
Order code STSPIN220
Package VFQFPN 3x3x1.0
16L
Packing Tape & reel
Low voltage stepper motor driver
STSPIN220
Datasheet
DS11633 - Rev 4 - March 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
.IH S‘epper m0|or
1Block diagram
Figure 2. Block diagram
Stepper
motor
VBAT
DAC
REF
STBY\RESET
Vrelease +
-
Control logic
Oscillator
+
-
VS
OVT
+
-
01
VS
GND
EN\FAULT
STCK\MODE3
DIR\MODE4
MODE1
TOFF
+
OUTA2
OUTA1
SENSEA
OC\SC
VS
OUTB2
OUTB1
SENSEB
VS
MODE2
AM040026
OC\SC
OC\SC
OC\SC
STSPIN220
Block diagram
DS11633 - Rev 4 page 2/27
2Electrical data
2.1 Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol Parameter Test condition Value Unit
VSSupply voltage -0.3 to 11 V
VIN Logic input voltage -0.3 to 5.5 V
VOUT - VSENSE Output-to-sense voltage drop Up to 12 V
VS - VOUT Supply-to-output voltage drop Up to 12 V
VSENSE Sense pin voltage -1 to 1 V
VREF Reference voltage input -0.3 to 1 V
IOUT,RMS Continuous power stage output current (each bridge) 1.3 Arms
Tj,OP Operative junction temperature -40 to 150 °C
Tj,STG Storage junction temperature -55 to 150 °C
2.2 Recommended operating conditions
Table 2. Recommended operating conditions
Symbol Parameter Test condition Min Typ Max Unit
VSSupply voltage 1.8 10 V
VIN Logic input voltage 0 5 V
VREF Reference voltage input 0.1 0.5 V
tINw Logic inputs positive/negative pulse width 300 ns
2.3 Thermal data
Table 3. Thermal data
Symbol Parameter Conditions Value Unit
Rth (JA) Junction to ambient thermal
resistance Natural convection, according to JESD51-2a (1) 57.1 °C/W
RthJCtop Junction to case thermal resistance
(top side) Simulation with cold plate on package top 67.3 °C/W
RthJCbot Junction to case thermal resistance
(bottom side) Simulation with cold plate on exposed pad 9.1 °C/W
RthJB Junction to board thermal resistance According to JESD51-8(1) 23.3 °C/W
ψJT Junction to top characterization According to JESD51-2a(1) 3.3 °C/W
ψJB Junction to board characterization According to JESD51-2a(1) 22.6 °C/W
1. Simulated on a 21.2x21.2 mm board, 2s2p 1 Oz copper and four 300 µm vias below exposed pad.
STSPIN220
DS11633 - Rev 4 page 3/27
2.4 ESD protection
Table 4. ESD protection ratings
Symbol Parameter Test condition Class Value Unit
HBM Human body model Conforming to ANSI/ESDA/JEDEC
JS-001-2014 H2 2 kV
CDM Charge device model Conforming to ANSI/ESDA/JEDEC
JS-002-2014 C2a 500 V
STSPIN220
ESD protection
DS11633 - Rev 4 page 4/27
3Electrical characteristics
Test conditions: VS = 5 V, Tj = 25 °C unless otherwise specified.
Table 5. Electrical characteristics
Symbol Parameter Test condition Min Typ Max Unit
Supply
VSth (ON) VS turn-on voltage VS rising from 0 V 1.45 1.65 1.79 V
VSth
(OFF)
VS turn-off voltage VS falling from 5 V 1.3 1.45 1.65 V
VSth
(HYS)
VS hysteresis voltage 180 mV
ISVS supply current
No commutations
EN = ‘0’
ROFF = 160 kΩ
960 1300 μA
No commutations
EN = ‘1’
ROFF = 160 kΩ
1500 1950 μA
IS,STBY VS standby current STBY = 0 V 10 80 nA
VSTBYL Standby low logic level input
voltage 0.9 V
VSTBYH Standby high logic level input
voltage 1.48 V
Power stage
RDS (ON)
HS+LS
Total ON resistance HS + LS
VS = 10 V,
IOUT = 1.3 A 0.4 0.65
VS = 10 V,
IOUT = 1.3 A,
Tj = 125 °C (1)
0.53 0.87
VS = 3 V,
IOUT = 0.4 A 0.53 0.8
IDSS Leakage current
OUTx = VS1
µA
OUTx = GND - 1
VDF Freewheeling diode forward
voltage ID = 1.3 A 0.9 V
trise Rise time
VS = 10 V;
unloaded outputs
10 ns
tfall Fall time
VS = 10 V;
unloaded outputs
10 ns
tDT Dead time 50 ns
Current control
STSPIN220
Electrical characteristics
DS11633 - Rev 4 page 5/27
Symbol Parameter Test condition Min Typ Max Unit
VSNS,OF
FSET
Sensing offset
VREF = 0.5 V;
Internal reference 20% VREF
-15 +15 mV
tOFF Total OFF time
ROFF = 10 kΩ 9 µs
ROFF = 160 kΩ 125 µs
ΔfOSC
Internal oscillator precision
(fOSC/fOSC,ID)ROFF = 20 kΩ -20% +20%
tOFF,jitter Total OFF time jittering ROFF = 10 kΩ 2%
tOFF,SLO
W
Slow decay time 5/8 ×
tOFF µs
tOFF,FAS
T
Fast decay time 3/8 ×
tOFF µs
Logic IOs
VIH High logic level input voltage 1.6 V
VIL Low logic level input voltage 0.6 V
VRELEAS
E
FAULT open drain release
voltage 0.4 V
VOL EN Low logic level output
voltage IEN = 4 mA 0.4 V
RSTBY STBY pull-down resistance 36 kΩ
IPDEN EN pull-down current 10.5 µA
tENd EN input propagation delay From EN falling edge to OUT high
impedance 55 ns
tMODEho MODEx input hold time From STBY edge, see Figure 6 100 µs
tMODEsu MODEx input setup time From STBY edge, see Figure 6 1 µs
tDIRh DIR input hold time From STCK rising edge, see Figure 5 100 ns
tDIRsu DIR input setup time From STCK rising edge, see Figure 5 100 ns
tSTCKH STCK high time See Figure 5 100 ns
tSTCKL STCK low time See Figure 5 100 ns
fSTCK STCK inputs frequency See Figure 5 1 MHz
Protections
TjSD Thermal shutdown threshold 160 °C
TjSD,Hyst Thermal shutdown hysteresis 40 °C
IOC Overcurrent threshold See Figure 15. Power stage resistance
versus temperature 2 A
1. Based on characterization data on a limited number of samples, not tested during production.
STSPIN220
Electrical characteristics
DS11633 - Rev 4 page 6/27
4Pin description
Figure 3. Pin connection (top view)
1
2
3
4
DIR\MODE4
STCK\MODE3
OUTA1
SENSEA
12
11
10
9
TOFF
REF
OUTB1
SENSEB
5 6 87
OUTA2 VS OUTB2GND
16
EPAD
15 1314
MODE1 MODE2 EN\FAULT
STBY\
RESET
Note: The exposed pad must be connected to ground.
Table 6. Pin description
N. Name Type Function
1 DIR\MODE4 Logic input Direction input, Step mode selection input 4.
2 STCK\MODE3 Logic input Step clock input, Step mode selection input 3.
3 OUTA1 Power output Power bridge output side A1.
4 SENSEA Power output Sense output of the bridge A.
5 OUTA2 Power output Power bridge output side A2.
6 VS Supply Device supply voltage.
7, EPAD GND Ground Device ground.
8 OUTB2 Power output Power bridge output side B2.
9 SENSEB Power output Sense output of the bridge B.
10 OUTB1 Power output Power bridge output side B1.
11 REF Analog input Reference voltage for the PWM current control circuitry.
12 TOFF Analog input Internal oscillator frequency adjustment.
13 EN\FAULT Logic input\Open drain
output
This is the power stage enable (when low, the power stage is turned off)
and is forced low through the integrated open-drain MOSFET when a
failure occurs.
14 STBY\RESET Logic input When forced low, the device is forced into low consumption mode.
15 MODE2 Logic input Step mode selection input 2.
16 MODE1 Logic input Step mode selection input 1.
STSPIN220
Pin description
DS11633 - Rev 4 page 7/27
5Typical application
Table 7. Typical application values
Name Value
CS2.2 µF / 16V
CSPOL 22 µF / 16V
RSNSA, RSNSB 330 mΩ / 1W
CEN 10 nF / 6.3V
REN 18 kΩ
CSTBY 1 nF / 6.3V
RSTBY 18 kΩ
COFF 22 nF
RCOFF 1 kΩ
ROFF 47 kΩ (tOFF 37 µs)
Figure 4. Typical application schematic
STSPIN220
VS
V
S
STBY
EN\FAULT
STCK\MODE3
DIR\MODE4
MODE1
PWM
MODE2
REF
TOFF
GND
OUTA1
OUTA2
OUTB1
SENSEA
SENSEB
OUTB2
V
DD
Stepper
motor
CSPOL
CS
CSTBY
CEN
R
SNSA
R
STBY
V
DD
R
EN
CRCOFF
R
RCOFF
R
SNSB
R
OFF
STSPIN220
Typical application
DS11633 - Rev 4 page 8/27
6Functional description
The STSPIN220 is a stepper motor driver integrating a microstepping sequencer (up to 1/256th of a step), two
PWM current controllers and a power stage composed of two fully-protected full-bridges.
6.1 Standby and power-up
The device provides a low consumption mode which is set forcing the STBY\RESET input below the VSTBYL
threshold.
When the device is in standby status, the power stage is disabled (outputs are in high impedance) and the supply
to the integrated control circuitry is cut off. When the device exits the standby status, all of the control circuitry is
reset to power-up condition.
At power-up, power-down and when leaving the standby condition, the EN/FAULT pin is forced low until the
internal circuitry stabilize.
6.2 Microstepping sequencer
The value of the MODEx inputs is latched at power-up and when the device exits the STBY condition. After this,
the input value is unimportant and the MODE3 and MODE4 inputs start operating as step-clock and direction
input.
The only exception is the MODE1 = MODE2 = LOW condition; in this case the system is forced into full-step
mode. The previous condition is restored as soon as the MODE1 and MODE2 inputs switch to a different
combination.
An example of mode selection is shown in Figure 5. STCK and DIR timing.
At each STCK rising edge, the sequencer of the device is increased (DIR input high) or decreased (DIR input low)
of a module selected through the MODEx inputs as listed in Table 8. Step mode selection through MODEx inputs.
The sequencer is a 10-bit counter that sets the reference value of the PWM current controller and the direction of
the current for both of the H bridges.
Table 8. Step mode selection through MODEx inputs
MODE3
(STCK)
MODE4
(DIR) MODE1 MODE2 Step mode
0 0 0 0 Full-step
0 0 0 1 1/32nd step
0 0 1 0 1/128th step
0 0 1 1 1/256th step
0 1 0 0 Full-step - 1/32nd step (1)
0 1 0 1 1/4th step
0 1 1 0 1/256th step
0 1 1 1 1/64th step
1 0 0 0 Full-step - 1/128nd step (1)
1 0 0 1 1/256th step
1 0 1 0 1/2 step
1 0 1 1 1/8th step
1 1 0 0 Full-step - 1/256th step (1)
1 1 0 1 1/64th step
STSPIN220
Functional description
DS11633 - Rev 4 page 9/27
mlww sum mm MODLI mom; menu mm MOLM (DIR) Sm mg stn‘" sky nmdc
MODE3
(STCK)
MODE4
(DIR) MODE1 MODE2 Step mode
1 1 1 0 1/8th step
1 1 1 1 1/16th step
1. This driving mode is automatically bypassed by the MODE1 = MODE2 = 0 if it is kept after the device quit the standby
condition.
Figure 5. STCK and DIR timing
DIR
tDIR,su tDIR,ho
tSTCKH tSTCKL
1/fSTCK
STCK
Figure 6. Mode selection example
V
SV
Sth(ON)
STBY\
RESET
MODE1
MODE2
Stepping
mode Undeterminated UndeterminatedFull-step1/256 t h step 1/256th step 1/16 th step
tMODEsu tMODEh
tMODEsu tMODEh
MODE3
(STCK)
MODE4
(DIR)
When the full-step mode is set, the reference value of the PWM current controller and the direction of the current
for both H bridges as listed in Table 8. Step mode selection through MODEx inputs.
STSPIN220
Microstepping sequencer
DS11633 - Rev 4 page 10/27
Table 9. Target reference and current direction according to sequencer value (full-step mode)
Sequencer value
Phase A Phase B
Reference voltage Current direction Reference
voltage
Current
direction
0 0 X X X X X X X X 100% × VREF A1 → A2 100% × VREF B1 → B2
0 1 X X X X X X X X 100% × VREF A1 → A2 100% × VREF B1 ← B2
1 0 X X X X X X X X 100% × VREF A1 ← A2 100% × VREF B1 ← B2
1 1 X X X X X X X X 100% × VREF A1 ← A2 100% × VREF B1 → B2
When the step mode is different from the full-step mode the values listed in Table 10. Target reference and current
direction according to sequencer value (not full-step mode) are used.
Table 10. Target reference and current direction according to sequencer value (not full-step mode)
Sequencer value
Phase A Phase B
Reference voltage Current
direction Reference voltage Current
direction
0 0 0 0 0 0 0 0 0 0 Zero
(power bridge disabled) -100% × VREF B1 → B2
0 0 N Sin(N/256 × π/2) × VREF A1 → A2 Cos(N/256 × π/2) × VREF B1 → B2
0 1 0 0 0 0 0 0 0 0 100% × VREF A1 → A2 Zero
(power bridge disabled) -
0 1 N Sin(π/2 + N/256 × π/2) ×
VREF A1 → A2 Cos(π/2 + N/256 × π/2) ×
VREF B1 ← B2
1 0 0 0 0 0 0 0 0 0 Zero
(power bridge disabled) -100% × VREF B1 ← B2
1 0 N Sin(N/256 × π/2) × VREF A1 ← A2 Cos(N/256 × π/2) × VREF B1 ← B2
1 1 0 0 0 0 0 0 0 0 100% × VREF A1 ← A2 Zero
(power bridge disabled) -
1 1 N Sin(π/2 + N/256 × π/2) ×
VREF A1 ← A2 Cos(π/2 + N/256 × π/2) ×
VREF B1 → B2
The following table shows the target reference and sequencer values for 1/2-, 1/4- and 1/8-step operation. Higher
microstepping resolutions follow the same pattern. The reset state (home state) for all stepping mode is entered
at power-up or when the device exits the standby status.
Table 11. Example
1/2 step 1/4 step 1/8 step VREF phase A VREF phase B Sequencer value
1 1 1 0% 100% 0000000000
home state
2 19.509% 98.079% 0000100000
2 3 38.268% 92.388% 0001000000
4 55.557% 83.147% 0001100000
STSPIN220
Microstepping sequencer
DS11633 - Rev 4 page 11/27
1/2 step 1/4 step 1/8 step VREF phase A VREF phase B Sequencer value
2 3 5 70.711% 70.711% 0010000000
6 83.147% 55.557% 0010100000
4 7 92.388% 19.509% 0011100000
8 98.079% 19.509% 0011100000
3 5 9 100% 0% 0100000000
10 98.079% -19.509% 0100100000
6 11 92.388% -38.268% 0101000000
12 83.147% -55.557% 0101100000
4 7 13 70.711% -70.711% 0110000000
14 55.557% -83.147% 0110100000
8 15 38.268% -92.388% 0111000000
16 19.509% -98.079% 1000100000
5 9 17 0% 100% 1000000000
18 -19.509% -98.079% 1000100000
10 19 -38.268% -92.388% 1001000000
20 -55.557% -83.147% 1001100000
6 11 21 -70.711% -70.711% 1010000000
22 -83.147% -55.557% 1010100000
12 23 -92.388% -38.268% 1011000000
24 -98.079% -19.509% 1011100000
7 13 25 -100% 0% 1100000000
26 -98.079% 19.509% 1100100000
14 27 -92.388% 38.268% 1101000000
28 -83.147% 55.557% 1101100000
8 15 29 -70.711% 70.711% 1110000000
30 -55.557% 83.147% 1110100000
16 31 -38.268% 92.388% 1111000000
32 -19.509% 98.079% 1111100000
Note: The positive number means that the output current is flowing from OUTx1 to OUTx2, vice versa for a negative
value.
6.3 PWM current control
The device implements two independent PWM current controllers, one for each full bridge.
The voltage of the sense pins (VSENSEA and VSENSEB) is compared to the respective internal reference generated
based on the sequencer value (see Table 9. Target reference and current direction according to sequencer value
(full-step mode) and Table 10. Target reference and current direction according to sequencer value (not full-step
mode)).
When VSENSEX > VREFX, the integrated comparator is triggered, the OFF time counter is started and the decay
sequence is performed.
The decay sequence starts turning on both the low sides of the full bridge. When 5/8ths of the programmed OFF
time (tOFF,SLOW) has expired, the decay sequence performs a quasi-synchronous fast decay.
STSPIN220
PWM current control
DS11633 - Rev 4 page 12/27
VREF = RSNSx ' lLoAD,peuk
Table 12. ON, slow decay and fast decay states
Current direction(1) ON Slow decay Fast decay (quasi-synch)
Zero (power bridge disabled)
HSX1 = OFF
LSX1 = OFF
HSX2 = OFF
LSX2 = OFF
HSX1 = OFF
LSX1 = OFF
HSX2 = OFF
LSX2 = OFF
HSX1 = OFF
LSX1 = OFF
HSX2 = OFF
LSX2 = OFF
X1 → X2
HSX1 = ON
LSX1 = OFF
HSX2 = OFF
LSX2 = ON
HSX1 = OFF
LSX1 = ON
HSX2 = OFF
LSX2 = ON
HSX1 = OFF
LSX1 = ON
HSX2 = OFF
LSX2 = OFF
X1 ← X2
HSX1 = OFF
LSX1 = ON
HSX2 = ON
LSX2 = OFF
HSX1 = OFF
LSX1 = ON
HSX2 = OFF
LSX2 = ON
HSX1 = OFF
LSX1 = OFF
HSX2 = OFF
LSX2 = ON
1. The current direction is set according toTable 9. Table 9 and Table 9. Target reference and current direction according to
sequencer value (full-step mode)Table 10. Target reference and current direction according to sequencer value (not full-step
mode) .
The reference voltage value, VREF, must be selected according to the load current target value (peak value) and
sense resistor value.
Equation 1
In choosing the sense resistor value, two main issues must be taken into account:
The sense resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during
current recirculation. For this reason the resistance of this component should be kept low (using multiple
resistors in parallel will help to obtain the required power rating with standard resistors).
The lower the RSNSx value, the higher the peak current error due to noise on the VREF pin and the input
offset of the current sense comparator. Values of RSNSx that are too low must be avoided.
STSPIN220
PWM current control
DS11633 - Rev 4 page 13/27
III—
Figure 7. PWM current control sequence
V
S
SENSEX
VS
OUTX1 OUTX2
R
SENSE
V
S
SENSEX
VS
OUTX1 OUTX2
R
SENSE
V
S
SENSEX
VS
OUTX1 OUTX2
R
SENSE
V
S
SENSEX
VS
OUTX1 OUTX2
R
SENSE
V
S
SENSEX
VS
OUTX1 OUTX2
R
SENSE
Iphase
tOFF
tOFF,SLOW
tDT
tDT
tOFF,FAST
V
SENSEX
V
REFX
V
REFX
/R
SENSE
6.3.1 OFF time adjustment
The total OFF time (slow decay + fast decay) is adjusted through an external resistor connected between the
TOFF pin and ground, as shown in Figure 7. PWM current control sequence. A small RC series must be inserted
in parallel with the regulator resistor in order to increase the stability of the regulation circuit according to
Table 12. ON, slow decay and fast decay states indications.
Figure 8. OFF time regulation circuit
TOFF
R
OFF
CRCOFF
R
RCOFF
STSPIN220
PWM current control
DS11633 - Rev 4 page 14/27
The relationship between the OFF time and the external resistor value is shown in Figure 8. OFF time regulation
circuit. The value typically ranges from 10 µs to 150 µs.
Table 13. Recommended R RCOFF and C RCOFF values according to R OFF
ROFF RRCOFF CRCOFF
10 kΩ ≤ ROFF < 82 kΩ 1 kΩ 22 nF
82 kΩ ≤ ROFF ≤ 160 kΩ 2.2 kΩ 22 nF
Figure 9. OFF time vs. ROFF value
0
20
40
60
80
100
120
140
0 50 100 150 200
Off time [us]
Off resistor [kohm]
6.4 Overcurrent and short-circuit protection
The device embeds circuitry protecting each power output against the overload and short circuit conditions (short-
circuit to ground, short-circuit to VS and short-circuit between outputs).
When the overcurrent or short-circuit protection is triggered, the power stage is disabled and the EN\FAULT input
is forced low through the integrated open-drain MOSFET discharging the external CEN capacitor (refer to
Figure 10. Overcurrent and short-circuit protection management).
The power stage is kept disabled and the open-drain MOSFET is kept ON until the EN\FAULT input falls below
the VRELEASE threshold, then the CEN capacitor is charged through the external REN resistor.
STSPIN220
Overcurrent and short-circuit protection
DS11633 - Rev 4 page 15/27
mummy tum- : tdischarge + trhurge t = R .5 MW DIS EN EN (VDD — REN ' IPDEN) — VIH
Figure 10. Overcurrent and short-circuit protection management
V
EN
Power
stage
FAULT
V
IH
V
RELEASE
V
IL
Overcurrent
protection
ENABLED DISABLED ENABLED
tOCSD
tDIS
tdischa rge tcha rge
V
RELEASE
EN\FAULT
FAULT_MCU
MCU DEVICE
EN_MCU
RELEASE
EN
OC\SC
THSD
FAULT
CEN IPDEN
R
EN
The total disable time after an overcurrent event can be set sizing properly the external network connected to the
EN\FAULT pin (refer to Figure 10. Overcurrent and short-circuit protection management):
Equation 2
But tcharge is normally much higher than tdischarge, thus we can consider the following:
Equation 3
where VDD is the pull-up voltage of the REN resistor.
STSPIN220
Overcurrent and short-circuit protection
DS11633 - Rev 4 page 16/27
Figure 11. Disable time versus REN and CEN values (VDD = 3.3 V)
10
100
1000
0 10 20 30 40 50 60 70 80 90 100
Disable time [µs]
CEN [nF]
REN = 3.3 kΩ
REN = 4.7 kΩ
REN = 2.2 kΩ
REN = 6.8 kΩ
REN = 10 kΩ
REN = 18 kΩ
Figure 12. Disable time versus REN and CEN values (VDD = 1.8 V)
10
100
1000
0 10 20 30 40 50 60 70 80 90 100
Disable time [µs]
CEN [nF]
REN = 3.3
REN = 4.7
REN = 2.2 kΩ
REN = 6.8 kΩ
REN = 10 kΩ
REN = 18 kΩ
6.5 Thermal shutdown
The device embeds circuitry protecting it from the overtemperature conditions.
STSPIN220
Thermal shutdown
DS11633 - Rev 4 page 17/27
When the thermal shutdown temperature is reached, the power stage is disabled and the EN\FAULT input is
forced low through the integrated open-drain MOSFET (refer to Figure 13. Thermal shutdown management).
The protection and the EN\FAULT output are released when the IC temperature returns below a safe operating
value (TjSD - TjSD,Hyst).
Figure 13. Thermal shutdown management
V
EN
FAULT
V
IH
V
RELEASE
V
IL
T
j
T
jSD
T
jSD,hyst
Thermal
shutdown
V
RELEASE
EN\FAULT
FAULT_MCU
MCU DEVICE
EN_MCU
RELEASE
EN
OC\SC
THSD
FAULT
CEN
R
EN
Power
stage ENABLED DISABLED DISABLED ENABLED
tTHSD
IPDEN
STSPIN220
Thermal shutdown
DS11633 - Rev 4 page 18/27
"am-Hired u v, z w v N mum N5 us v; M
7Graphs
Figure 14. Power stage resistance versus supply voltage
Figure 15. Power stage resistance versus temperature
0.8
0.9
1
1.1
1.2
1.3
1.4
-50 0 50 100 150
R HS+LS normalized at 25
DS(ON) °C
Temperature [°C]
VS
= 1. 8 V
VS
= 3 V
VS
= 10 V
STSPIN220
Graphs
DS11633 - Rev 4 page 19/27
a >T,>..E.__E§;_2!Eo
Figure 16. Overcurrent threshold versus supply voltage
STSPIN220
Graphs
DS11633 - Rev 4 page 20/27
SEAT‘NG o PLANE E C ‘0 l “ E 743131: "<2 d="" pin="" #1="" \d="" d1="" c:0‘30="" e="" 13="" 16="" j="" u="" u="" l="" 124="" c="" |="" c="" h="" a="" j="" +="" c="" m="" w="" 9="" j="" r="" 7="" i="" it="" 7="" 8="" b="" 5="" l="" d2="">
8Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
8.1 VFQFPN 3x3x1.0 16L package information
Figure 17. VFQFPN 3x3x1.0 16L package outline
STSPIN220
Package information
DS11633 - Rev 4 page 21/27
3,40 M6 6 nm; fig QVM;
Table 14. VFQFPN 3x3x1.0 16L package mechanical data
Symbol
Dimensions
(mm)
Min. Typ. Max. Notes
A 0.80 0.90 1.00 (1) (2)
A1 0.02 0.05
A3 0.20
b 0.18 0.25 0.30
D 2.9 3.00 3.1
D1 1.50
D2 1.70 1.80 1.90
E 2.9 3.00 3.1
E1 1.50
E2 1.70 1.80 1.90
e 0.45 0.50 0.55
L 0.30 0.40 0.50
ddd 0.08
1. VFQFPN stands for "thermally-enhanced very thin fine pitch quad package, no lead". Very thin: 0.80 < A ≤ 1.00 mm / Fine
pitch: e < 1.00 mm. The pin 1 identifier must be present on the top surface of the package as an indentation mark or other
feature of the package body.
2. The chamfer of lead n 1,4,5,8,9,12,13,16 is 0.042 mm in both, x and y direction, with 45°.s
Figure 18. VFQFPN 3x3x1.0 16L recommended footprint
STSPIN220
VFQFPN 3x3x1.0 16L package information
DS11633 - Rev 4 page 22/27
Revision history
Table 15. Document revision history
Date Version Changes
06-May-2016 1 Initial release.
30-Jun-2016 2
- Updated document status to Datasheet - production data on page 1.
- Updated Table 1 (changed Max. value of VS from 12 to 11) and Table 7 (changed tOFF
value from 47 µs to 37 µs).
28-Nov-2016 3
- Updated Figure 1 in Section 1 Block diagram (replaced by new figure).
- Updated Table 2 in Section 2.2 Recommended operating conditions (added tINw
symbol).
- Updated Table 3 in Section 2.3 Thermal data(replaced by new table).
- Updated Table 8 in Section 6.2 Microstepping sequencer [removed "Sequencer module
(binary)" column].
- Added Table 11 in Section 6.2 Microstepping sequencer.
- Updated Table 13 in (updated title).
- Updated Figure 13 in (replaced by new figure).
- Minor modifications throughout document.
21-Mar-2019 4 Updated Section 8.1 VFQFPN 3x3x1.0 16L package information
STSPIN220
DS11633 - Rev 4 page 23/27
Contents
1Block diagram .....................................................................2
2Electrical data .....................................................................3
2.1 Absolute maximum ratings.......................................................3
2.2 Recommended operating conditions ..............................................3
2.3 Thermal data ..................................................................3
2.4 ESD protection ................................................................3
3Electrical characteristics...........................................................5
4Pin description ....................................................................7
5Typical application.................................................................8
6Functional description .............................................................9
6.1 Standby and power-up ..........................................................9
6.2 Microstepping sequencer ........................................................9
6.3 PWM current control ...........................................................12
6.3.1 OFF time adjustment.....................................................14
6.4 Overcurrent and short-circuit protection ...........................................15
6.5 Thermal shutdown.............................................................17
7Graphs ...........................................................................19
8Package information..............................................................21
8.1 VFQFPN 3x3x1.0 16L package information........................................21
Revision history .......................................................................23
Contents ..............................................................................24
List of tables ..........................................................................25
List of figures..........................................................................26
STSPIN220
Contents
DS11633 - Rev 4 page 24/27
List of tables
Table 1. Absolute maximum ratings .............................................................3
Table 2. Recommended operating conditions.......................................................3
Table 3. Thermal data.......................................................................3
Table 4. ESD protection ratings ................................................................4
Table 5. Electrical characteristics ...............................................................5
Table 6. Pin description......................................................................7
Table 7. Typical application values ..............................................................8
Table 8. Step mode selection through MODEx inputs .................................................9
Table 9. Target reference and current direction according to sequencer value (full-step mode) .................... 11
Table 10. Target reference and current direction according to sequencer value (not full-step mode) ................. 11
Table 11. Example ......................................................................... 11
Table 12. ON, slow decay and fast decay states .................................................... 13
Table 13. Recommended R RCOFF and C RCOFF values according to R OFF .................................... 15
Table 14. VFQFPN 3x3x1.0 16L package mechanical data ............................................. 22
Table 15. Document revision history ............................................................. 23
STSPIN220
List of tables
DS11633 - Rev 4 page 25/27
List of figures
Figure 2. Block diagram ....................................................................2
Figure 3. Pin connection (top view) .............................................................7
Figure 4. Typical application schematic ..........................................................8
Figure 5. STCK and DIR timing .............................................................. 10
Figure 6. Mode selection example ............................................................ 10
Figure 7. PWM current control sequence ........................................................ 14
Figure 8. OFF time regulation circuit ........................................................... 14
Figure 9. OFF time vs. ROFF value ............................................................ 15
Figure 10. Overcurrent and short-circuit protection management ........................................ 16
Figure 11. Disable time versus REN and CEN values (VDD = 3.3 V) ....................................... 17
Figure 12. Disable time versus REN and CEN values (VDD = 1.8 V) ....................................... 17
Figure 13. Thermal shutdown management ....................................................... 18
Figure 14. Power stage resistance versus supply voltage ............................................. 19
Figure 15. Power stage resistance versus temperature ............................................... 19
Figure 16. Overcurrent threshold versus supply voltage .............................................. 20
Figure 17. VFQFPN 3x3x1.0 16L package outline .................................................. 21
Figure 18. VFQFPN 3x3x1.0 16L recommended footprint ............................................. 22
STSPIN220
List of figures
DS11633 - Rev 4 page 26/27
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
STSPIN220
DS11633 - Rev 4 page 27/27