Infineon Technologies 的 BFP780 规格书

BFP780
High linearity RF medium power transistor
Product description
The BFP780 is a single stage high linearity and high gain driver amplifier based on NPN
silicon germanium technology.
Feature list
High maximum RF input power PRFin,max = 20 dBm
Minimum noise figure NFmin = 1.2 dB at 900 MHz, 5 V, 30 mA
OIP3 = 34.5 dBm at 900 MHz, 5 V, 90 mA
OP1dB = 23 dBm at 900 MHz, 5 V, 90 mA
Product validation
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.
Potential applications
Commercial and industrial wireless infrastructure
ISM band medium power amplifiers and drivers
Automated test equipment
UHF television, CATV and DBS
Device information
Table 1 Part information
Product name / Ordering code Package Pin configuration Marking Pieces / Reel
BFP780 / BFP780H6327XTSA1 SOT343 1 = B 2 = E 3 = C 4 = E R1s 3000
Attention:ESD (Electrostatic discharge) sensitive device, observe handling precautions
Datasheet Please read the Important Notice and Warnings at the end of this document v4.0
www.infineon.com 2018-09-26
®
Table of contents
Product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical performance in test fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 DC parameter table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 AC parameter tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Characteristic DC diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Characteristic AC diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Package information SOT343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
BFP780
High linearity RF medium power transistor
Table of contents
Datasheet 2 v4.0
2018-09-26
®
1 Absolute maximum ratings
Table 2 Absolute maximum ratings at TA = 25 °C (unless otherwise specified)
Parameter Symbol Values Unit Note or test condition
Min. Max.
Collector emitter voltage VCE – 6.1
5.1
VTA = 25 °C
TA = -40 °C
Collector base voltage VCB 15 –
Instantaneous total collector current iC240 mA DC + RF swing
DC collector current IC120 –
DC base current IB-1 5
RF input power PRFin 20 dBm In- and output matched
Dissipated power Pdiss 600 mW TS ≤ 93 °C 1), regard
derating curve in Figure 1.
Junction temperature TJ150 °C –
Operating case temperature TA-40 105 2)
Storage temperature TStg -55 150
Attention:Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause
irreversible damage to the component.
1TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the PCB.
2At the same time regard TJ,max.
BFP780
High linearity RF medium power transistor
Absolute maximum ratings
Datasheet 3 v4.0
2018-09-26
®
2 Recommended operating conditions
The following table shows examples of recommended operating conditions. As long as maximum ratings are
regarded, operation outside these conditions is permitted, but it may increases failure rate and reduces lifetime.
For further information refer to the quality report available on the BFP780 product page.
Table 3 Recommended operating conditions
Operating
mode
Ambient
tempera-
ture 1)
Collector
current
DC
power 2) RF output
power 3) Efficiency 4) Dissipated
power 5) Thermal
resistance
of PCB 6)
Junction
tempera-
ture 7)
TA
[°C]
IC
[mA]
PDC
[mW]
PRFout
[mW]
(dBm)
η
[%]
Pdiss
[mW]
RthSA
[K/W]
TJ
[°C]
Compres-
sion
55 90 450 200 (23) 45 250 120 110
Final stage 55 90 450 115 (20.5) 25 340 70 110
High TA85 50 250 75 (19) 30 175 35 110
Maximum
TA
105 20 100 45 (16.5) 45 55 35 110
Linear 55 50 250 20 (13) 8 230 120 110
Very linear 55 90 450 23 (13.5) 5 430 35 110
1Is the operating case temperature respectively of the heatsink.
2PDC = VCE* IC with VCE = 5 V.
3RF power delivered to the load, PRFout =
η
* PDC.
4Efficiency of the conversion from DC power to RF power,
η
= PRFout / PDC (collector efficiency).
5Pdiss = PDC - PRFout. The RF output power PRFout delivered to the load reduces the power Pdiss to be
dissipated by the device. This means a good output match is recommended.
6RthSA is the thermal resistance of the PCB including heat sink, that is between the soldering point S and
the ambient A. Regard the impact of RthSA on the junction temperature TJ, see below. The thermal design
of the PCB, respectively RthSA, has to be adjusted to the intended operating mode.
7TJ = TA + Pdiss * RthJA.
RthJA = RthJS + RthSA.
RthJA is the thermal resistance between the transistor junction J and the ambient A.
RthJS is the combined thermal resistance of die and package, which is 95 K/W for BFP780, see Chapter 3.
BFP780
High linearity RF medium power transistor
Recommended operating conditions
Datasheet 4 v4.0
2018-09-26
® 700 600 500 400 300 200 100 25 50 75 T5 [we] 100 125 150
3 Thermal characteristics
Table 4 Thermal resistance
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Junction - soldering point RthJS 95 K/W –
0 25 50 75 100 125 150
0
100
200
300
400
500
600
700
TS[°C]
Pdiss,max [mW]
Figure 1 Absolute maximum power dissipation Pdiss,max = f(TS)
Note: In the horizontal part of the derating curve the maximum power dissipation is given
by Pdiss,max ≈ VCE,max * IC,max. In this part, the junction temperature TJ is lower than TJ,max. In the
declining slope, it is TJ = TJ,max. Pdiss,max has to be reduced according to the curve in order not to
exceed TJ,max. It is TJ,max = TS + Pdiss,max * RthJS.
BFP780
High linearity RF medium power transistor
Thermal characteristics
Datasheet 5 v4.0
2018-09-26
®
4 Electrical performance in test fixture
4.1 DC parameter table
Table 5 DC characteristics at TA = 25 °C
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Collector emitter breakdown voltage V(BR)CEO 6.1 6.6 – V IC = 1 mA, open base
Collector emitter leakage current ICES – 1
0.1
40 1)
3 1)
nA
μA
VCE = 8 V, VBE = 0 V,
VCE = 18 V, VBE = 0 V,
E-B short circuited
Collector base leakage current ICBO 1 40 1) nA VCB = 8 V, IE = 0,
open emitter
Emitter base leakage current IEBO 10 1) μA VEB = 0.5 V, IC = 0,
open collector
DC current gain hFE 85 160 230 VCE = 5 V, IC = 90 mA,
pulse measured 2)
4.2 AC parameter tables
Table 6 General AC characteristics at TA = 25 °C
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Transition frequency fT 20 GHz VCE = 5 V, IC = 90 mA
Collector base capacitance CCB 0.37 pF VCB = 5 V, VBE = 0 V,
f = 1 MHz,
emitter grounded
Collector emitter capacitance CCE 1.4 VCE = 5 V, VBE = 0 V,
f = 1 MHz,
base grounded
Emitter base capacitance CEB 3.3 VEB = 0.5 V, VCB = 0 V,
f = 1 MHz,
collector grounded
1Accuracy is not limited by the device but by the cycle time of the 100% test.
2Test duration 14 ms, duty cycle 46%. Regard that the current gain hFE depends on the junction
temperature TJ and TJ amongst others from the thermal resistance RthSA of the PCB, see notes on Table 3.
Hence the hFE specified in this data sheet must not be the same as in the application. It is recommended
to apply circuit design techniques to make the collector current IC independent on the hFE production
variation and temperature effects.
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 6 v4.0
2018-09-26
® W
Measurement setup for the AC characteristics shown in Table 7 to Table 10 is a test fixture with Bias-T’s and
tuners to adjust the source and load impedance in a 50 Ω system. TA = 25 °C.
E
Input-Tuner
C
B
Z
S
Output-Tuner
Z
L
Bias-T
DUT
V
CC
Bias-T
V
BB
In
Out
E
Figure 2 BFP780 testing circuit
Table 7 AC characteristics, VCE = 5 V, f = 900 MHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Power gain
Maximum power gain
Transducer gain
Gms
|S21|2
27
21.5
– dB
IC = 90 mA
Minimum noise figure
Minimum noise figure
NFmin
1.2 IC = 30 mA
Linearity
1 dB compression point at output
3rd order intercept point at output
OP1dB
OIP3
23
34.5
dBm ZL = ZL,opt(Pout),
IC = 90 mA
Table 8 AC characteristics, VCE = 5 V, f = 1.8 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Power gain
Maximum power gain
Transducer gain
Gms
|S21|2
22
15
– dB
IC = 90 mA
Minimum noise figure
Minimum noise figure
NFmin
1.4 IC = 30 mA
Linearity
1 dB compression point at output
3rd order intercept point at output
OP1dB
OIP3
22
34
dBm ZL = ZL,opt(Pout),
IC = 90 mA
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 7 v4.0
2018-09-26
®
Table 9 AC characteristics, VCE = 5 V, f = 2.6 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Power gain
Maximum power gain
Transducer gain
Gma
|S21|2
18
12
– dB
IC = 90 mA
Minimum noise figure
Minimum noise figure
NFmin
1.7 IC = 30 mA
Linearity
1 dB compression point at output
3rd order intercept point at output
OP1dB
OIP3
22
34
dBm ZL = ZL,opt(Pout),
IC = 90 mA
Table 10 AC characteristics, VCE = 5 V, f = 3.5 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Power gain
Maximum power gain
Transducer gain
Gma
|S21|2
15
8.5
– dB
IC = 90 mA
Minimum noise figure
Minimum noise figure
NFmin
2.4 IC = 30 mA
Linearity
1 dB compression point at output
3rd order intercept point at output
OP1dB
OIP3
22
33.5
dBm ZL = ZL,opt(Pout),
IC = 90 mA
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 8 v4.0
2018-09-26
infineon 180 160 140 120 100 80 60 40 20 0.1 1 10 100 1000
4.3 Characteristic DC diagrams
0 1 2 3 4 5 6 7
0
20
40
60
80
100
120
140
160
180
V
CE
[V]
I
C
[mA]
0mA
0.1mA
0.2mA
0.3mA
0.4mA
0.5mA
0.6mA
0.7mA
0.8mA
0.9mA
1mA
1.1mA
Figure 3 Collector current vs. collector emitter voltage IC = f(VCE), IB = parameter
Note: Refer to absolute maximum ratings for IC, VCE and Pdiss.
0.1 1 10 100 1000
10
1
10
2
10
3
I
c
[mA]
h
FE
Figure 4 DC Current gain hFE = f(IC), VCE = 5 V
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 9 v4.0
2018-09-26
®
102103104105106107
6
8
10
12
14
16
18
20
22
24
RBE[Ω]
V( BR)CER
. [V]
102103104105106107
6
8
10
12
14
16
18
20
22
24
RBE[Ω]
V( BR)CER
. [V]
RBE
B
C
E
Figure 5 Collector emitter breakdown voltage V(BR)CER = f(RBE)
Note: The above figure shows the collector-emitter breakdown voltage V(BR)CER with a resistor RBE between
base and emitter. Only for very high RBE values ("open base") the breakdown voltage V(BR)CER is as low
as V(BR)CEO (here 6.6 V). With decreasing RBE values V(BR)CER increases, e.g. at RBE = 10 k
Ω
to V(BR)CEO =
10 V. In the application the biasing base resistance together with block capacitors take over the
function of RBE and allows the RF voltage amplitude to swing up to voltages much higher than
V(BR)CEO, without clipping. Due to this effect the transistor can be biased at VCE = 5 V and still high RF
output powers achieved, see the OP1dB values reported in Chapter 4.2.
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 10 v4.0
2018-09-26
W 25 20 i 15 10 O 20 4O 60 80 100 120 140 800 700 600 K K\ 400 300 200 0 20 40 60 80 100 120 140
4.4 Characteristic AC diagrams
Figure 6 Transition frequency fT = f(IC), VCE = parameter
0 20 40 60 80 100 120 140
200
300
400
500
600
700
800
I
C
[mA]
C
CB
[fF]
2.00V
5.00V
4.00V
3.00V
Figure 7 Collector base capacitance CCB = f(IC), f = 1 GHz, VCB = parameter
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 11 v4.0
2018-09-26
@ 40 35 30 25 20 15 10 r [GHz] 20 40 60 80 100 120 140
0 1 2 3 4 5 6
0
5
10
15
20
25
30
35
40
f [GHz]
G [dB]
G
ms
G
ma
|S
21
|
2
Figure 8 Gain Gms, Gma, IS21I2 = f(f), VCE = 5 V, IC = 90 mA
0 20 40 60 80 100 120 140
12
14
16
18
20
22
24
26
28
30
32
IC[mA]
Gmax [dB]
0.45GHz
0.90GHz
1.80GHz
2.60GHz
3.50GHz
Figure 9 Maximum power gain Gmax = f(IC), VCE = 5 V, f = parameter
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 12 v4.0
2018-09-26
®
0 1 2 3 4 5 6
12
14
16
18
20
22
24
26
28
30
32
V
CE
[V]
G [dB]
3.50GHz
2.60GHz
1.80GHz
0.90GHz
0.45GHz
Figure 10 Maximum power gain Gmax = f(VCE), IC = 90 mA, f = parameter
10.1 0.2 0.3 0.4 0.5 21.5 3 4 5
0
1
1
1.5
1.5
2
2
3
3
4
4
5
5
10
10
0.5
0.5
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
2.0
0.03 to 12 GHz
10.0
0.03
1.0
3.0
4.0
5.0 6.0 7.0 8.0 9.0
11.0
12.0
0.03
90mA
30mA
Figure 11 Input reflection coefficient S11 = f(f), VCE = 5 V, IC = parameter
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 13 v4.0
2018-09-26
(ifileon
10.1 0.2 0.3 0.4 0.5 21.5 3 4 5
0
1
1
1.5
1.5
2
2
3
3
4
4
5
5
10
10
0.5
0.5
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
1.0
4.0
0.03 to 12 GHz
2.0
3.0
5.0
6.0
7.0
8.0
9.0 10.0 11.0 12.0
0.03
90mA
30mA
Figure 12 Output reflection coefficient S22 = f(f), VCE = 5 V, IC = parameter
10.1 0.2 0.3 0.4 0.5 21.5 3 4 5
0
1
1
1.5
1.5
2
2
3
3
4
4
5
5
10
10
0.5
0.5
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
0.5
0.9
1.5
1.8
2.4
3.0
3.5
0.5
0.9
1.5
1.8
2.4
3.0
3.5
0.45 to 4 GHz0.45 to 4 GHz
30mA
90mA
Figure 13 Source impedance for minimum noise figure ZS,opt = f(f), VCE = 5 V, IC = parameter
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 14 v4.0
2018-09-26
® 3.5 2.5 1.5 0.5 \ \ 0.5 1.5 2 2.5 3 3.5 4 3.5 2.5 1.5 0.5 \ / / // \_// / i
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.5
1
1.5
2
2.5
3
3.5
4
f [GHz]
NF
min
[dB]
I
C
= 30mA
I
C
= 90mA
Figure 14 Noise figure NFmin = f(f), VCE = 5 V, ZS = ZS,opt, IC = parameter
0 20 40 60 80 100
0
0.5
1
1.5
2
2.5
3
3.5
4
I
C
[mA]
NF
min
[dB]
f = 0.45GHz
f = 0.9GHz
f = 1.5GHz
f = 1.8GHz
f = 2.6GHz
f = 3.5GHz
Figure 15 Noise figure NFmin = f(IC), VCE = 5 V, ZS = ZS,opt, f = parameter
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 15 v4.0
2018-09-26
® 6666666
0 20 40 60 80 100
0
1
2
3
4
5
6
I
C
[mA]
NF
50
[dB]
f = 0.45GHz
f = 0.9GHz
f = 1.5GHz
f = 1.8GHz
f = 2.6GHz
f = 3.5GHz
Figure 16 Noise figure NF50 = f(IC), VCE = 5 V, ZS = 50 Ω, f = parameter
10.1 0.2 0.3 0.4 0.5 21.5 3 4 5
0
1
1
1.5
1.5
2
2
3
3
4
4
5
5
10
10
0.5
0.5
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
23 22.6
21.7 20.5
19.6
18.8
17.5
15
Figure 17 Load pull contour OP1dB [dBm], VCE = 5 V, IC = 90 mA, f = 900 MHz
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 16 v4.0
2018-09-26
® 1°” 1 w ‘ ‘ ‘V \ eu 3‘ r ‘ 7 ‘ w 1 ‘\_ 60 / /j/.— \ / 40 / 1 \ \ 2° 7’ \5 /e w /e 0// ; 720 45 ,10 u 5
10.1 0.2 0.3 0.4 0.5 21.5 3 4 5
0
1
1
1.5
1.5
2
2
3
3
4
4
5
5
10
10
0.5
0.5
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
34.7
34
32.5
31
29.5
27.3
25
20.5
Figure 18 Load pull contour OIP3 [dBm], VCE = 5 V, IC = 90 mA, f = 900 MHz
20 15 10 50 5 10
0
20
40
60
80
100
P
in
[dBm]
Gain [dB], Pout [dBm], PAE [%]
Gain
PAE
Pout
IC
60
65
70
75
80
85
I
C
[mA]
R
1
R
2
B
C
E
IP1dB
Figure 19 Pout, Gain, IC, PAE = f(Pin), VCE = 5 V, f = 900 MHz, R1 = 270 Ω, R2 = 8 kΩ, ZL = ZL,opt(Pout)
Note: The curves shown in this chapter have been generated using typical devices but shall not be
understood as a guarantee that all devices have identical characteristic curves. TA = 25 °C.
BFP780
High linearity RF medium power transistor
Electrical performance in test fixture
Datasheet 17 v4.0
2018-09-26
Infineon 0/
5 Package information SOT343
ALL DIMENS IONS ARE IN UNITS MM
THE DRAWING IS IN COMP LIANCE WITH IS O 128 & P ROJECTION METHOD 1 [ ]
MOLD FLAS H, P ROTRUS ION OR G ATE BURRS OF 0 .2 MM MAXIMUM PER S IDE ARE NOT INCLUDED
12
43
2±0. 2
0.15
0.6-0.0 5
0.3-0.0 5
1.3
1.25 ±0.1
0.9±0. 1
0.1 MAX.
0.15 -0 .0 5
0.1 MIN.
2.1±0. 1
+0.10
+0.10
+0.10
A
0.1
0.2 A
0.1 3x
0.1
Figure 20 Package outline
Figure 21 Foot print
TYPE CO DE
MONTH
NOTE O F MANUFACTURER
YEAR
Figure 22 Marking layout example
ALL DIME NS ION S AR E IN UNITS MM
THE DRAWING IS IN C OMP LIANCE WIT H IS O 12 8 & PR O J EC TIO N METHO D 1 [ ]
4
2
8
2.15
0.2
1.1
2.3
INDEX MARKING
P IN 1
Figure 23 Tape dimensions
BFP780
High linearity RF medium power transistor
Package information SOT343
Datasheet 18 v4.0
2018-09-26
®
Revision history
Document
version
Date of
release
Description of changes
4.0 2018-09-26 New datasheet layout.
BFP780
High linearity RF medium power transistor
Revision history
Datasheet 19 v4.0
2018-09-26
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-09-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-ebx1468299694130
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical values
stated herein and/or any information regarding the
application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of
any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customers products and any use of the product of
Infineon Technologies in customers applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury