Infineon Technologies 的 TLI4970-D025T4* 规格书

L“ mneon
Sense & Control
Data Sheet
Rev. 1.2, 2019-03-21
TLI4970-D025T4
High precision miniature coreless magnetic current sensor for AC and DC
measurements with digital interface and fast overcurrent detection
Edition 2019-03-21
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2019 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
@
TLI4970-D025T4
Data Sheet 3 Rev. 1.2, 2019-03-21
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2011-02-24
Revision History
Page or Item Subjects (major changes since previous revision)
Rev. 1.2, 2019-03-21
Page 16 Table 3-3 “Accuracy Parameters” on Page 16 updated
Page 20 Table 3-6 “Isolation Parameters according to IEC 60747-5-2” on Page 20
updated
Page 17 Figure 3-1 updated
®
TLI4970-D025T4
Table of Contents
Data Sheet 4 Rev. 1.2, 2019-03-21
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Filter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Increased Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Fast Over Current Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Isolation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 CSA Component Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6.1 Board Description for CSA Component Acceptance Test Conditions . . . . . . . . . . . . . . . . . . . . . . . 21
4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 SPI Interface Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Logical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1.1 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1.2 Description of the SPI Data Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1.3 Sensor Current Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1.4 Sensor Status Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Physical SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Serial Inspection and Configuration Interface (SICI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 PG-TISON-8-1 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Footprint Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 PCB Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Laser Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table of Contents
®
TLI4970-D025T4
List of Figures
Data Sheet 5 Rev. 1.2, 2019-03-21
Figure 1-1 TLI4970-D025T4 device in PG-TISON-8-1 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2-1 Pin configuration PG-TISON-8-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2-2 Functional block diagram of the TLI4970-D025T4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2-3 Transfer function formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2-4 Transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2-5 Bode plots for different filter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3-1 Distribution of the maximum total error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3-2 Application circuit for readout of multiple sensors in parallel bus mode . . . . . . . . . . . . . . . . . . . . . 19
Figure 3-3 Test board setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3-4 Dimension and layout of test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3-5 Heat sink dimension (in mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4-1 SPI interface timing: Readout of sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5-1 PG-TISON-8-1 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 5-2 Carrier tape of the PG-TISON-8-1 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 5-3 Footprint recommendation for reflow soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5-4 PCB layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5-5 Laser marking on the top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
List of Figures
®
TLI4970-D025T4
List of Tables
Data Sheet 6 Rev. 1.2, 2019-03-21
Table 1-1 Order Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2-1 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2-2 Overview about bandwidth and response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3-2 Electrical Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3-3 Accuracy Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3-4 OCD Output Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 3-5 Typical Application Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3-6 Isolation Parameters according to IEC 60747-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 3-7 Isolation Parameters according to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 3-8 Absolute maximum ratings according to CSA component acceptance . . . . . . . . . . . . . . . . . . . . . 21
Table 3-9 Test board parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 3-10 Heat sink parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 4-1 Interface Timing Parameters (5MHz SPI clock speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 4-2 Interface Electrical Characteristics (5MHz SPI clock speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
List of Tables
®
TLI4970-D025T4
Product Description
Data Sheet 7 Rev. 1.2, 2019-03-21
1 Product Description
1.1 Overview
The TLI4970-D025T4 is a highly accurate coreless magnetic current sensor. Thus, the output signal is highly linear
and without hysteresis. However, a differential measurement principle allows effective stray field suppression.
Due to the integrated primary conductor (current rail), there is no need for external calibration. Additionally, a
separate interface pin (OCD) provides a fast output signal in case a current exceeds a pre-set threshold.
A small leadless package (QFN-like) allows for standard SMD assembly.
Figure 1-1 TLI4970-D025T4 device in PG-TISON-8-1 package
1.2 Features
AC & DC measurement range up to ±25 A
Highly accurate over temperature range and lifetime
max. 1.0 % (0 h), max.1.6 % (over lifetime) of indicated value
Low offset error (max. 25 mA at room temperature)
High magnetic stray field suppression
Fast over current detection with configurable threshold
Galvanic isolation up to 2.5 kV max. rated isolation voltage
(according to UL 1577)
16 bit digital SPI output (13 bit current value)
Small 7 mm x 7 mm SMD package
Table 1-1 Order Information
Product Name Product Type Package Ordering Number
TLI4970-D025T4 Qualified according to industrial standards: For use
in industrial / consumer applications
PG-TISON-8-1 SP001323154
®
TLI4970-D025T4
Product Description
Data Sheet 8 Rev. 1.2, 2019-03-21
1.3 General Information
The TLI4970-D025T4 is a high-precision digital current sensor. The full scale measurement range is ±25 A. The
sensor is based on Infineon's well-established and robust Hall technology.
The measurement principle allows galvanic isolation (functional isolation) between the primary conductor and the
secondary interface side.
The coreless concept without a flux concentrator allows significant miniaturization. It shows no hysteresis effects
and has enhanced linearity and over current capability compared to existing solutions. The differential
measurement principle achieves best-in-class suppression of magnetic stray fields. The sensor is fully calibrated;
no need for any additional calibration after PCB assembly is necessary. Thus, the overall implementation effort
and costs are significantly reduced. It is a plug-and-play solution, easy to use in industrial and consumer
applications.
The accuracy of the TLI4970-D025T4 is comparable to closed-loop current measurement systems and even better
than open-loop systems with magnetic core. But in comparison to the open- and closed-loop system the TLI4970-
D025T4 enables a significantly smaller footprint and less power consumption.
Infineon's patented stress compensation circuit provides outstanding long-term stability of the output signal.
Proprietary dynamic offset cancellation techniques guarantee particularly low zero point error. Hereby, the
TLI4970-D025T4 offers superior performance.
The TLI4970-D025T4 is based on a digital concept. Thus, signal processing, compensation and calibration is
already integrated. No further external measurements for compensation are needed.
The sensor is provided in a small 7 mm x 7 mm SMD package.
1.4 Target Applications
The TLI4970-D025T4 is suitable for AC as well as DC current measurement applications:
Current monitoring
• Chargers
Photovoltaic & general purpose inverters
Power supplies (SMPS)
Electrical drive
•etc.
With its implemented magnetic interference suppression, it is extremely robust when exposed to external magnetic
fields. It is also suitable for fast over current detection with a configurable threshold level. This allows the control
unit to switch off and protect the affected system from damage, independently of the main measurement path.
®
TLI4970-D025T4
Functional Description
Data Sheet 9 Rev. 1.2, 2019-03-21
2 Functional Description
2.1 Pin Configuration
Figure 2-1 Pin configuration PG-TISON-8-1
Table 2-1 Pin Definition and Function
Pin No. Symbol Function
1 GND Ground
2 VDD Supply voltage
3 DOUT SPI data out
4 SCLK Serial clock input
5CSChip select input (low-active)
6 OCD Over current detection output (open drain output)
7 IP+ Positive current terminal pin (current-in)
8 IP- Negative current terminal pin (current-out)
12345
6
7
8
Infineon \P‘ Suppwv Ewasing. 7 von k ,Ummuuu Bandgap —GND IMMI+ ------- 1 I I I _ 4—6—CS Galvanic Separation mm w <— sclk="" —=""> DOUT 0CD
TLI4970-D025T4
Functional Description
Data Sheet 10 Rev. 1.2, 2019-03-21
2.2 Block Diagram
Figure 2-2 Functional block diagram of the TLI4970-D025T4
2.3 Functional Description
The current, flowing through the current rail on the primary side, induces a magnetic field. This is measured by two
differential Hall probes. The signal from the two Hall probes is directly digitalized by a Sigma-Delta-A/D converter
(ADC). After the programmable digital low-pass filter, the raw current signal is fed into the DSP. The differential
measurement principle of the magnetic field provides a very good suppression of any ambient magnetic stray
fields.
The temperature (T) and the mechanical stress (S) of the chip are measured and converted independently of the
primary current by a second ADC. The Digital Signal Processing Unit (DSP) uses both temperature and stress
information to compensate the raw current signal according to internally stored calibration tables. The interface
unit (IF) transmits the fully compensated value via the SPI interface.
Furthermore several parameters like low pass filter settings or over current detection (OCD) levels can be
programmed via a Serial Inspection and Configuration Interface (SICI) which are described in the TLI4970
programming guide.
For fast over current detection, the raw analog signal from the Hall probes is fed into a programmable comparator.
This comparator has a programmable glitch filter to suppress fast switching transients in the signal and to avoid
false triggers. The open-drain output of the OCD-Pin allows readout of over current signals for several TLI4970-
D025T4 sensors by only one microcontroller input pin.
(imeon
TLI4970-D025T4
Functional Description
Data Sheet 11 Rev. 1.2, 2019-03-21
2.4 Transfer Function
The transfer function is given by the formula shown in Figure 2-3.
Figure 2-3 Transfer function formula
The basic point are defined by the value 0D (-25.6000A) and 8191D (25.59375A). Outside this current range, the
sensor status message will be sent instead of the sensor current message (see Figure 2-4).
Figure 2-4 Transfer function
][160
][4096][
][
A
LSB
DD
out
D
LSBLSBout
AI
=
][4096][160][][
D
A
LSB
D
LSBAILSBout
D
+=
Current [A]
05 10152025-5-10-15-20-25
Output [LSB
B
]
Output [LSB
B
]
1 1111 1111 11118191
7168
6144
5120
4096
3072
2048
1024
0
1 1100 0000 0000
1 1000 0000 0000
1 0100 0000 0000
1 0000 0000 0000
0 1100 0000 0000
0 1000 0000 0000
0 0100 0000 0000
0 0000 0000 0000
Sensor st atus message
Sensor current message
@
TLI4970-D025T4
Functional Description
Data Sheet 12 Rev. 1.2, 2019-03-21
2.5 Filter Settings
The transfer function of the TLI4970-D025T4 can be influenced by different filter settings. Finally the combination
of a high-pass filter, a prediction filter and a low-pass filter determines the overall transfer function. Figure 2-5
shows the Bode plots for different filter settings. The filter settings can be changed by EEPROM programming.
The manual for EEPROM programming can be found in the TLI4970 programming guide (application note).
Table 2-2 gives an overview about the different filter settings.
Note: TLI4970-D025T4 default factory setting is 18 kHz.
Table 2-2 Overview about bandwidth and response time
High-pass filter Prediction filter Low-pass filter Bandwidth Response time1)
1) 90% of final value based on 25 A step function
1 1 7 70 Hz 6.2 ms
1 1 6 130 Hz 3.1 ms
1 1 5 260 Hz 1.6 ms
1 1 4 530 Hz 781 µs
1 1 3 1.1 kHz 394 µs
1 1 2 2.4 kHz 201 µs
1 1 1 5.2 kHz 109 µs
1 1 0 6.9 kHz 92 µs
0 0 0 10 kHz 70 µs
0 1 0 18 kHz 57 µs
infineon 5mm] 5mm] 5mm] 5mm] [all 3 gr. r : 75 m r -5” ”’5 g —Gam ”5 -pm W 5 —Phasz W 10 ma \5 10 mm m m. 10 am Flnuuency my "equally [H1] -5” 5 i ' —Gam 5 -pm "5 W 5 -pm “’fi 10 mm c )0 1m Flnuuency my quuenty [M2] -5” 5 i ' —Gam 5 -pm "5 W 5 -pm “’fi 10 mm c )0 1m Flnuuency my quuenty [M2] -5” 5 i ' —Gam 5 -pm "5 W 5 -pm “SE 10 mm c m .m Flnuuency my "equally [H1] -5” 5 i ' —Gam 5 -pm "5 W 5 -pm ‘3’ W 10 mm c )0 1m Flnuuency my [mummy [N1]
TLI4970-D025T4
Functional Description
Data Sheet 13 Rev. 1.2, 2019-03-21
Figure 2-5 Bode plots for different filter settings
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
90
5
Phase [°]
®
TLI4970-D025T4
Functional Description
Data Sheet 14 Rev. 1.2, 2019-03-21
2.6 Increased Temperature Range
The max. specified ambient operating temperature of 85°C is limited due to the power dissipation in the current
rail. The thermal loss finally increases the junction temperature which has to be limited to 125°C.
Reducing the current through the current rail decreases the thermal loss and therewith a higher ambient operating
temperature is possible.
@
TLI4970-D025T4
Specification
Data Sheet 15 Rev. 1.2, 2019-03-21
3 Specification
3.1 Absolute Maximum Ratings
Attention: Stresses above the limit values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the integrated circuit.
3.2 Operating Conditions
Table 3-1 Absolute Maximum Ratings
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Supply voltage VDD -0.3 - +3.6 V
Maximum primary current IP-60 - +60 A TA = TContact_IP_IN
1)
1) TContact_IP_IN: Temperature of current rail on PCB at solder joint.
Maximum primary pulse
current
IP_PULSE - - 150 A Max. 3 pulses, 200 ms each;
tested with 105 µm Cu layer on
PCB
Voltage on interface pins
DOUT, SCLK & OCD
VIO -0.3 - +3.6 V
Voltage on interface pin
CS
VIO_CS -0.3 - +21.0 V
ESD voltage2)
2) According to standard EIA / JESD22-A114-E Human Body Model (HBM)
VESD_HBM --±2kV
Maximum junction
temperature
TJ_max --+125°C
Storage temperature TA_STORE -40 - +125 °C Not connected
Table 3-2 Electrical Operating Parameters
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Supply voltage VDD 3.1 3.3 +3.5 V
Voltage on interface pin
CS
VIO_CS
VIO_PROG
-0.3
+20.5
-
-
+3.6
+20.7
V
V
Normal operation
Only during programming
Current consumption IDD 5 12 20 mA Secondary side
Full-scale primary current
measurement range
IPFSR -25 - +25 A
@
TLI4970-D025T4
Specification
Data Sheet 16 Rev. 1.2, 2019-03-21
Primary resistance RP
-
-
0.6
-
-
1.0
m
m
Resistance of current rail
TA = 25°C
TJ_max
Ambient temperature TA-40 - +85 °C TA = TContact_IP_IN
1)
1) TContact_IP_IN: Temperature of current rail on PCB at solder joint.
Table 3-3 Accuracy Parameters
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Relative offset error εROE -0.1
-0.15
-0.3
-
-
-
+0.1
+0.15
+0.3
% of
IPFSR
% of
IPFSR
% of
IPFSR
@ 0A DC & TA = 25°C
@ 0A DC & TA = -40°C
@ 0A DC & TA = 85°C
Absolute offset error εAOE -25.0
-37.5
-75.0
-
-
-
+25.0
+37.5
+75.0
mA
mA
mA
@ 0A DC & TA = 25°C
@ 0A DC & TA = -40°C
@ 0A DC & TA = 85°C
Relative total error (gain,
offset, linearity) incl.
lifetime-drift and whole
temperature range1)
1) Valid for soldered parts on PCB based on the footprint recommendation in Figure 5-3 and a copper thickness of 70 µm
εRTE -2 - +2 % of IPPercentage of indicated value
Absolute total error (gain,
offset, linearity) incl.
lifetime-drift and whole
temperature range1)
εATE -20 - +20 mA/A Absolute total error proportional to
IP
Update rate fUPDATE -80- kSPS
2)
2) kSPS: Thousand samples per second
Resolution G- 6.25 - mA /
LSB
13-Bit current value via SPI
Noise3)
3) Characterized in the laboratory for small signals; IP = 0 mA
INOISE -10- mA
RMS @ TA = 25°C & BWI = 1.1 kHz4)
4) Bandwidth settings will affect noise
Bandwidth of current
measurement path
BWI_min
BWI_max
-
-
70
18
-
-
Hz
kHz
-3 dB cutoff; see Section 2.5 for
filter settings
Power-on time - - 15 ms To stable and accurate output
data
Table 3-2 Electrical Operating Parameters (cont’d)
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
TLI4970-D025T4
Specification
Data Sheet 17 Rev. 1.2, 2019-03-21
Figure 3-1 Distribution of the maximum total error
0
0.4
0.8
1.2
1.6
error [%full scale]
0-20-60-80
accuracy 0h
-100
accuracy over lifetime1)
2
-2
-1.6
-1.2
-0.8
-0.4
-40 20 40 60 80 100
current [% of full scale]
0
100
200
300
400
500
-500
-400
-300
-200
-100
error [mA]
1) according to performed stress tests during qualification, solder parts on
PCB based on the footprint recommendation and copper thikness of 70 μm
@
TLI4970-D025T4
Specification
Data Sheet 18 Rev. 1.2, 2019-03-21
3.3 Fast Over Current Output
The Fast Over Current (OCD) pin allows fast detection of an over current in the measurement path. The OCD
signal path is independent from the bandwidth limited current signal path and has a programmable glitch filter to
avoid false triggers by noise spikes on the current rail. The symmetric threshold level of the OCD output is
adjustable and triggers an over current event in case of a positive or negative over current.
In addition a zero-crossing functionality can be programmed (in this case the over current detection is disabled).
If connected via an external pull-up resistor to a logic input pin of the microcontroller, it can be used to trigger an
interrupt in the microcontroller and quickly shut off the system to avoid damage from the over current event. The
OCD pin has an open-drain output that allows monitoring of several current sensors via only one microcontroller
input pin. For details, please refer to the application circuit shown in Figure 3-2.
The instruction for the settings can be found in the TLI4970 programming guide.
Table 3-4 OCD Output Parameter
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Threshold level1)
1) Symmetric threshold level for positive and negative currents
ITHR 6 - 90 A Programmable (EEPROM).
Default factory value 30A.
Accuracy XOCD -20- % I
PFSR
Response time of fast
over current detection2)3)
2) Falling edge level of OCD-pin <0,5VDD
3) Characterized in lab under worst case test conditions: RPU = 4.7k to VDD; CL = 1 nF to GND
tD_OC -1.83.5μs Only valid for I/t < 500 kA/s
Load capacitance CL--1nFTo GND
Open-drain current IOD_on - - 1 mA Resistive to VDD;
VOD_on 0.2 x VDD
Pull-up resistor RPU 4.7 - - kTo VDD
De-glitch filter time tdeglitch - 750 - ns Default factory value
@ C i T :1 C T i :1 C :1 C :1 it: 37 37 C :1 C _L C T C C it: C
TLI4970-D025T4
Specification
Data Sheet 19 Rev. 1.2, 2019-03-21
3.4 Application Circuit
Figure 3-2 Application circuit for readout of multiple sensors in parallel bus mode
Table 3-5 Typical Application Values
Name Value
RPU 47 k
RL100 k
CS100 nF
VDD
GND
SCLK
DOUT
OCD
CS
Sensor 1 µC
VDD
GND
SCLK
SPI-Data-IN
CS1
CS2
Interrupt-IN
RLRPU
CS
CS
+3.3 V
Power Interface controller Logic I/O
VDD
GND
SCLK
OCD
CS
Sensor 2
DOUT
@
TLI4970-D025T4
Specification
Data Sheet 20 Rev. 1.2, 2019-03-21
3.5 Isolation Characteristics
The TLI4970-D025T4 is qualified and tested according IEC and UL standards (functional isolation).
Table 3-6 Isolation Parameters according to IEC 60747-5-2
Description Symbol Characteristic Unit
Maximum rated working voltage (AC & DC-voltage)1)2)3)
1) Refer to IEC 60747-5-2 for a detailed description of voltages and partial discharge tests
2) The given value is just an example based on pollution degree 2
3) According to performed stress test (85°C, 85% relative humidity, 1000 h test time & 600 V applied insulation voltage)
UIOWM 330 V
Maximum repetitive isolation voltage (max. AC & DC-voltage)1)3) UIORM 330 Vpeak
Apparent charge test voltage (Method B)1)3)4)
Partial discharge < 5pC
4) Tested with 50Hz at room temperature
Upd,b 900 Vpeak
Isolation test voltage (1 sec)1) UISO 2546 VRMS
Maximum surge voltage (1.2 / 50 μs)1) UIOSM 3600 Vpeak
Minimum external creepage distance CPG 3.0 mm
Minimum external clearance distance CLR 3.0 mm
Minimum comparative tracking index CTI 575
(Material group II)
Isolation resistance, UIO = 500 V 5)
5) Not subject to production test - verified by design/characterization
RIO > 1010
Table 3-7 Isolation Parameters according to UL 1577
Description Symbol Characteristic Unit
Maximum rated isolation voltage (1 min.) UISO 2546 VRMS
Isolation test voltage (1 sec) UISO 2546 VRMS
@
TLI4970-D025T4
Specification
Data Sheet 21 Rev. 1.2, 2019-03-21
3.6 CSA Component Acceptance
The following section describes the test condition for the CSA component acceptance.
3.6.1 Board Description for CSA Component Acceptance Test Conditions
The device was soldered on a test board described in Figure 3-4 and Table 3-9. Besides, a heat sink was
mounted (Figure 3-3).
Figure 3-3 Test board setting
Table 3-8 Absolute maximum ratings according to CSA component acceptance
Description Symbol Characteristic Unit
Absolute maximum ambient temperature TA_CA 85 °C
Absolute maximum Isolation voltage1)
1) Test conditions: 60 Hz for 60 s
UISO_CA 2546 VRMS
Absolute maximum current2)
2) Test condition: 4h, the device was mounted on the PCB described below
IPFSR_CA 50 A3)
3) rms or DC
Table 3-9 Test board parameters
Description Value
Dimension 85 mm x 36 mm
PCB material FR4
PCB thickness 1.55 µm
No. of copper layers 4
Thickness of each copper layer 105 µm
PCB
Device
Heat sink
wT cow—E:— v+ ‘f 3.3 Emom ion , +_ amuzfi + Infineon 0/
TLI4970-D025T4
Specification
Data Sheet 22 Rev. 1.2, 2019-03-21
Figure 3-4 Dimension and layout of test board
InTable 3-10 and Figure 3-5 the used heat sink is described.
Figure 3-5 Heat sink dimension (in mm
Table 3-10 Heat sink parameters
Description Value
Type SK68
Manufacturer Fischer Elektronik
Dimension 33 mm x 46 mm x 50 mm
Thermal resistance 4.8 K/W
BothSidesOpen
BothSidesOpen
85mm
36mm
35,6
46
17
33
22
36,75
6,25 7,5 7,5 6,25
5,2
31
@
TLI4970-D025T4
Interfaces
Data Sheet 23 Rev. 1.2, 2019-03-21
4 Interfaces
4.1 SPI Interface Definition
The TLI4970-D025T4 has a 3-pin serial peripheral interface (SPI). A standard unidirectional 16-bit SPI protocol is
used. Several sensors can be connected to a parallel SPI bus. An example on how to connect multiple sensors is
given in Figure 3-2. The timing parameters are given in Table 4-1.
4.1.1 Logical Interface
All SPI frames are based on a 16-bit word. A parity bit in each SPI frame allows the detection of transmission errors
and increases the reliability of the measured data. The transmission of the data is triggered by the CS-pin.
4.1.1.1 Protocol Description
The internal data register is continuously updated with the internal update rate fUPDATE. When CS is pulled to low,
the actual value from the data register is written into the SPI output register. Like in standard SPI protocol, the
sensor starts to transmit the data when clock pulses are applied to the SCLK pin and the CS-pin is still low. With
the next 16 clock pulses, the data word is sent out via the DOUT pin. If more than 16 clock pulses are sent by the
SPI-Master and the CS-pin stays low, the sensor sends 0’s for all additional clock pulses. If a new sample should
be read from the sensor, the CS-pin has to return to the high state for at least the time tCSON before pulling it to low
again in order to trigger the next sample readout.
The clock pulses are ignored and the DOUT pin is in high ohmic state, when the CS-pin is in “high” state. Therefore
multiple chips can be readout on the same data bus by sequentially selecting the addressed sensor via the CS-pin.
4.1.1.2 Description of the SPI Data Frames
There are two different types of SPI frames sent from the sensor. The “Sensor Status Message” and the “Sensor
Value Message”. The two types are distinguished by the STATUS Bit. The DATA section contains different
information. For details see below.
General structure of the 16-bit SPI data frame
Note: All fields marked as “r” are read-only values.
4.1.1.3 Sensor Current Message
The actual measurement current value is returned in the Sensor Value Message.
GENERAL Offset Reset Value
16-bit SPI data frame 00H4000H
15 01515
r
STAT
1414
r
PAR
13 0
r
DATA
@ rrrrrr
TLI4970-D025T4
Interfaces
Data Sheet 24 Rev. 1.2, 2019-03-21
Structure of the Sensor Value Message
4.1.1.4 Sensor Status Message
The Sensor Status Word contains information about temperature and load conditions and is sent under the
following conditions:
Once after start-up (“Sensor restarted”)
During the sensor start-up phase when a command is sent (“Sensor busy”)
If an internal error occurred (“Sensor fail”)
Structure of the Sensor Status Message
VALUE Offset Reset Value
Value of the actual current measurement 01H4000H
Field Bits Type Description
015rStatus
Status identifier of a Sensor Value Word
PAR 14 r Parity Bit
Odd parity of current value.
This bit is set in a way that the sum of all bits in the Value Word is odd.
OCD 13 r OCD-state
Over current comparator value
0B No over current
1B Over current detected
CURRENT 12:0 r Current value
Actual measured current value.
STATUS Offset Reset Value
Sensor status message 02H8000H
15 01515
r
0
1414
r
PAR
1313
r
OCD
12 0
r
CURRENT
15 01515
r
1
1414
r
PAR
1313
r
HW
1212
r
OL
1111
r
OT
1010
r
COM
90
r
RESERVED
@
TLI4970-D025T4
Interfaces
Data Sheet 25 Rev. 1.2, 2019-03-21
4.1.2 Physical SPI Interface
The TLI4970-D025T4 has a 3-pin unidirectional SPI interface. This interface can be driven with a clock up to
5 MHz. The timing parameters are given in Table 4-1. Electrical characteristics are given in Table 4-2.
Figure 4-1 SPI interface timing: Readout of sensor data
Field Bits Type Description
115rStatus
Status identifier of a Sensor Status Word
PAR 14 r Parity Bit
Odd parity of current value.
This bit is set in a way that the sum of all bits in the Status Word is odd.
HW 13 r Hardware error
0B OK
1B Internal error; sensor not usable
OL 12 r Overload error
0B OK
1B Overload (Current outside IPFSR range)
OT 11 r Temperature error
0B OK
1B Temperature out of range
COM 10 r Communication error
0B OK
1B No multiple of 16 SCLK cycles detected in last frame
RESERVED 9:0 r Reserved
Don’t care - Reserved for future use
SCLK
DOUT
CS
t
SPI
t
CLH
t
CLL
t
CSS
t
DS
t
DZ
t
CSH
t
CSON
MSB LSB
@
TLI4970-D025T4
Interfaces
Data Sheet 26 Rev. 1.2, 2019-03-21
4.2 Serial Inspection and Configuration Interface (SICI)
The serial inspection and configuration interface is only used for EEPROM programming. This interface is a one
wire interface provided by a double seizure of the OCD pin. To guarantee a proper SICI communication current
must not flow through the primary conductor (to avoid interferences with potential over current detection). The
instruction for the serial inspection and configuration interface can be found in the TLI4970 programming guide.
Table 4-1 Interface Timing Parameters1) (5MHz SPI clock speed)
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
1) All timing parameters are valid on the sensor pin with the specified test load only. Different loading due to PCB mounting
might result in different timing.
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SPI speed (1 / bit time) fSPI - - 5 MHz Duty cycle ratio 45% ... 55%
SPI period tSPI 200 - - ns
SCLK duty cycle tCLH / tCLL 45 - 55 %
CS setup time tCSS 95 - - ns RL 100 k
CL 50 pF to GND
CS hold time tCSH 95 - - ns RL 100 k
CL 50 pF to GND
Data setup time tDS - - 65 ns
Delay between CS rising
edge and end of DOUT
data
tDZ - - 75 ns
CS high time tCSON 300 - - ns
Table 4-2 Interface Electrical Characteristics (5MHz SPI clock speed)
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Output level low (SPI) VOL - - 0.2 x VDD V Resistive load; 1 mA to GND
Output level high (SPI) VOH 0.8 x VDD - - ns Resistive load; 1 mA to GND
Input level low (SPI) VIL -0.1 - 0.3 x VDD V
Input level high (SPI) VIH 0.7 x VDD -VDD V
Input level hysteresis
(SPI)
0.05 x
VDD
-- V
Input capacitance CI- - 100 pF For all digital input pins
Input resistance RI100 - - kFor all digital input pins
Load capacitance CL- - 50 pF To GND; For all digital output pins
Load resistance RL100 - - kTo VDD; For all digital output pins
infineon N \ ° 1 2|:me f 70 m 0 lil g m ‘ 4 x} ‘ <3 ,="" ,="" .="" 7="" ,="" if,="" h="" m="" o="" ‘="" m="" m="" m="" 01.="" a="" 0l="" 2‘:="" 01="" \="" e="" e'="" '3="" ‘=' O ‘ x)T‘EBAR,CONNECTEDTOCURRENTRNL 3 ‘ o m m N z E m M \ ‘ ‘ ‘ ‘ \ I 77“ 1 1‘1 1 7‘ "m on 4; g 3‘ In P‘NfiHDENT
TLI4970-D025T4
Package
Data Sheet 27 Rev. 1.2, 2019-03-21
5 Package
The TLI4970-D025T4 is packaged in a RoHS compliant, halogen-free leadless package (QFN-like).
5.1 PG-TISON-8-1 Package Outline
Figure 5-1 PG-TISON-8-1 package dimensions
ALL DIMENSIONS IN MILLIMETER
@ H M 3‘ H 19 $ é €19 ® 6} <9 g}="" $="" a;="" 1%="" f}—®7e77}7$7%77}7$"e”’ifiififz="" y="" [wow="" and="" nw="" mm="" am="" a;="" zaaoamsn;="" @="" mm="" ,="" «w="" :="" 501mm="" wrpwaswwov="" mm:="">
TLI4970-D025T4
Package
Data Sheet 28 Rev. 1.2, 2019-03-21
5.2 Packing
Figure 5-2 Carrier tape of the PG-TISON-8-1 package
ALL DIMENSIONS IN MILLIMETER
infineon TISDNiEiil: Eoordpods & Apertures ah ma 3 W v.15 m stewCH tmdmess 12mm CODDE’Y‘ stencil apertures :Mn des‘gn recommended me (1“ Copper pads dependent Ga appHCuflon
TLI4970-D025T4
Package
Data Sheet 29 Rev. 1.2, 2019-03-21
5.3 Footprint Recommendation
Figure 5-3 Footprint recommendation for reflow soldering
5.4 PCB Layout Recommendation
The PCB layout recommendation shown in Figure 5.4 leads to the preferred current flow through the housing to
achieve the highest accuracy.
Figure 5-4 PCB layout recommendation
ALL DIMENSIONS IN MILLIMETER
@
TLI4970-D025T4
Package
Data Sheet 30 Rev. 1.2, 2019-03-21
5.5 Laser Marking
Figure 5-5 Laser marking on the top side
Infineon
TLI4970
D025T4
X X
H W WY Y
X XX X
Date Code
YY: Year
WW: Week
Information:
Green Package
(RoHS compliant
and halogen-free)
Lot No.
Sales Code
Marker for
Orientation
(Pin 1 is
below)
Internal Tracking No.
(Subject to change
without notice)
Published by Infineon Technologies AG
www.infineon.com