STGIPS30C60T-H 规格书

‘ lile.augmemed !
April 2015 DocID025530 Rev 3 1/19
STGIPS30C60T-H
SLLIMM™ small low-loss intelligent molded module
IPM, 3-phase inverter - 30 A, 600 V short-circuit rugged IGBT
Datasheet
-
preliminary data
Features
IPM 30 A, 600 V 3-phase IGBT inverter bridge
including control ICs for gate driving and free-
wheeling diodes
Short-circuit rugged IGBTs
3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull-down /
pull-up resistors
Undervoltage lockout
Internal bootstrap diode
Interlocking function
Shutdown function
DBC leading to low thermal resistance
Isolation rating of 2500 V
rms
/min
4.7 k NTC for temperature control
UL recognized: UL1557 file E81734
Applications
3-phase inverters for motor drives
Air conditioners
Description
This intelligent power module provides a
compact, high performance AC motor drive in a
simple, rugged design. Combining ST proprietary
control ICs with the most advanced short-circuit-
rugged IGBT system technology, this device is
ideal for 3-phase inverters in applications such as
motor drives and air conditioners. SLLIMM™ is a
trademark of STMicroelectronics.
SDIP-25L
Table 1. Device summary
Order code Marking Package Packing
STGIPS30C60T-H GIPS30C60T-H SDIP-25L Tube
www.st.com
Contents STGIPS30C60T-H
2/19 DocID025530 Rev 3
Contents
1 Internal block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . 3
2 Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 SDIP-25L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PM 1 mm H Vbnnt u LIN u Hm u Vt: um v vmn v 5m: LIN v Hm v mm H Vbnnt w LIN w Hm w n PM ‘5 mumm
DocID025530 Rev 3 3/19
STGIPS30C60T-H Internal block diagram and pin configuration
19
1 Internal block diagram and pin configuration
Figure 1. Internal block diagram
AM09320v6
O O 17 we 19 2:: 21 22 23 24 25
Internal block diagram and pin configuration STGIPS30C60T-H
4/19 DocID025530 Rev 3
Figure 2. Pin layout (bottom view)
Table 2. Pin description
Pin n° Symbol Description
1OUT
U
High-side reference output for U phase
2V
bootU
Bootstrap voltage for U phase
3LIN
U
Low-side logic input for U phase
4HIN
U
High-side logic input for U phase
5V
CC
Low voltage power supply
6OUT
V
High-side reference output for V phase
7V
boot V
Bootstrap voltage for V phase
8 GND Ground
9LIN
V
Low-side logic input for V phase
10 HIN
V
High-side logic input for V phase
11 OUT
W
High-side reference output for W phase
12 V
boot W
Bootstrap voltage for W phase
13 LIN
W
Low-side logic input for W phase
14 HIN
W
High-side logic input for W phase
15 SD Shutdown logic input (active low)
16 T1 NTC thermistor terminal
17 N
W
Negative DC input for W phase
18 W W phase output
19 P Positive DC input
20 N
V
Negative DC input for V phase
21 V V phase output
22 P Positive DC input
23 N
U
Negative DC input for U phase
24 U U phase output
25 P Positive DC input
0$5.,1*$5($





        
DocID025530 Rev 3 5/19
STGIPS30C60T-H Electrical ratings
19
2 Electrical ratings
2.1 Absolute maximum ratings
Table 3. Inverter part
Symbol Parameter Value Unit
V
PN
Supply voltage applied between P - N
U
, N
V
, N
W
450 V
V
PN(surge)
Supply voltage (surge) applied between P - N
U
,
N
V
, N
W
500 V
V
CES
Each IGBT collector emitter voltage (V
IN(1)
= 0)
1. Applied between
HIN
i
, LIN
i and
GND
for i = U, V, W
600 V
± I
C
Each IGBT continuous collector current
at T
C
= 25°C 30 A
± I
CP (2)
2. Pulse width limited by max junction temperature
Each IGBT pulsed collector current 60 A
P
TOT
Each IGBT total dissipation at T
C
= 25°C 52 W
t
scw
Short circuit withstand time, V
CE
= 0.5 V
(BR)CES
T
J
= 125 °C, V
CC
= V
boot
= 15 V, V
IN (1)
= 0 - 5 V s
Table 4. Control part
Symbol Parameter Value Unit
V
OUT
Output voltage applied between
OUT
U,
OUT
V,
OUT
W
- GND V
boot
- 21 to V
boot
+ 0.3 V
V
CC
Low voltage power supply -0.3 to +21 V
V
boot
Bootstrap voltage applied between
V
boot i
- OUT
i
for i = U, V, W -0.3 to 620 V
V
IN
Logic input voltage applied between HIN, LIN and
GND -0.3 to 15 V
V
SD
Open drain voltage -0.3 to 15 V
dV
OUT
/dt Allowed output slew rate 50 V/ns
Table 5. Total system
Symbol Parameter Value Unit
V
ISO
Isolation withstand voltage applied between each
pin and heatsink plate (AC voltage, t = 60 sec.) 2500 V
T
j
Power chips operating junction temperature -40 to 150 °C
T
C
Module case operation temperature -40 to 125 °C
U) Ammm
Electrical ratings STGIPS30C60T-H
6/19 DocID025530 Rev 3
2.2 Thermal data
Table 6. Thermal data
Symbol Parameter Value Unit
R
thJC
Thermal resistance junction-case single IGBT 2.4 °C/W
Thermal resistance junction-case single diode 5 °C/W
Figure 3. Maximum I
C(RMS)
current vs. switching
frequency
(1)
Figure 4. Maximum I
C(RMS)
current vs. f
sine(1)
1. Simulated curves refer to typical IGBT parameters and maximum R
thj-c.
AM17110v1
12
14
16
18
20
22
24
26
28
30
32
I
c(RMS)
(A)
481216
fsw (kHz)
3-phase sinusoidal PWM
V
PN
= 300 V, Modulation Index = 0.8,
PF = 0.6, T
j
= 150 °C, fsine
= 60 Hz
Tc = 80 °C
Tc = 100 °C
AM17111v1
8
10
12
14
16
18
20
I
c(RMS)
(A)
110100
fsine (Hz)
3
-
phase sinusoidal PWM
V
PN
= 300 V, Modulation Index = 0.8,
PF = 0.6, T
j
= 150 °C, T
c = 100 °C
fsw = 12 kHz
fsw = 16 kHz
fsw = 20 kHz
DocID025530 Rev 3 7/19
STGIPS30C60T-H Electrical characteristics
19
3 Electrical characteristics
T
J
= 25 °C unless otherwise specified.
Note: t
ON
and t
OFF
include the propagation delay time of the internal drive. t
C(ON)
and t
C(OFF)
are
the switching time of IGBT itself under the internally given gate driving condition.
Table 7. Inverter part
Symbol Parameter Test conditions Value Unit
Min. Typ. Max.
V
CE(sat)
Collector-emitter
saturation voltage
V
CC
= V
boot
= 15 V, V
IN(1)
= 0 ÷ 5 V,
I
C
= 30 A -1.92.4
V
V
CC
= V
boot
= 15 V, V
IN(1)
= 0 ÷ 5 V,
I
C
= 30 A, T
J
= 125 °C -2.2
I
CES
Collector-cut off current
(V
IN(1)
= 0 “logic state”) V
CE
= 550 V, V
CC
= V
Boot
= 15 V - 100 µA
V
F
Diode forward voltage V
IN(1)
= 0 “logic state”, I
C
= 30 A - 2.35 V
Inductive load switching time and energy
t
on
Turn-on time
V
PN
= 300 V,
V
CC
= V
boot
= 15 V,
V
IN(1)
= 0 ÷ 5 V,
I
C
= 30 A
(see Figure 5)
-440 -
ns
t
c(on)
Crossover time (on) - 190 -
t
off
Turn-off time - 780 -
t
c(off)
Crossover time (off) - 135 -
t
rr
Reverse recovery time - 505 -
E
on
Turn-on switching losses - 870 - µJ
E
off
Turn-off switching losses - 740 -
1. Applied between
HIN
i
, LIN
i and
GND
for i = U, V, W.
L] LJ H] L>—‘
Electrical characteristics STGIPS30C60T-H
8/19 DocID025530 Rev 3
Figure 5. Switching time test circuit
Figure 4 "Switching time definition" refers to HIN, LIN inputs (active high).
Figure 6. Switching time definition
AM06019v2
V
CE
I
C
I
C
V
IN
t
ON
t
C(ON)
VIN(ON) 10% IC 90% IC 10% VCE
(a) turn-on (b) turn-off
t
rr
100% IC 100% IC
V
IN
V
CE
t
OFF
t
C(OFF)
VIN(OFF) 10% VCE 10% IC
AM09223V1
CC
DocID025530 Rev 3 9/19
STGIPS30C60T-H Electrical characteristics
19
3.1 Control part
Table 8. Low voltage power supply (V
CC
= 15 V unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
CC_hys
V
CC
UV hysteresis 1.2 1.5 1.8 V
V
CC_thON
V
CC
UV turn ON threshold 11.5 12 12.5 V
V
CC_thOFF
V
CC
UV turn OFF threshold 10 10.5 11 V
I
qccu
Undervoltage quiescent
supply current
V
CC
= 10 V
SD = 5 V; LIN = 0; HIN = 0 450 µA
I
qcc
Quiescent current V
CC
= 15 V
SD = 5 V; LIN = 0; HIN = 0 3.5 mA
Table 9. Bootstrapped voltage (V
CC
= 15 V unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
BS_hys
V
BS
UV
hysteresis 1.2 1.5 1.8 V
V
BS_thON
V
BS
UV
turn ON threshold 11.1 11.5 12.1 V
V
BS_thOFF
V
BS
UV
turn OFF threshold 9.8 10 10.6 V
I
QBSU
Undervoltage V
BS
quiescent
current
V
BS
< 9 V
SD = 5 V; LIN = 0, HIN = 5 V 70 110 µA
I
QBS
V
BS
quiescent current V
BS
= 15 V
SD = 5 V; LIN = 0, HIN = 5 V 200 300 µA
R
DS(on)
Bootstrap driver on resistance LIN= 5 V; HIN= 0 V 120
Table 10. Logic inputs (V
CC
= 15 V unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
il
Low logic level voltage 0.8 1.1 V
V
ih
High logic level voltage 1.9 2.25 V
I
HINh
HIN logic “1” input bias current HIN = 15 V 20 40 100 µA
I
HINi
HIN logic “0” input bias current HIN = 0 V 1 µA
I
LINh
LIN logic “1” input bias current LIN = 15 V 20 40 100 µA
I
LINi
LIN logic “0” input bias current LIN = 0 V 1 µA
I
SDh
SD logic “0” input bias current SD = 15 V 30 120 300 µA
I
SDl
SD logic “1” input bias current SD = 0 V 3 µA
Dt Dead time see Figure 9 and Table 14 1.2 µs
Electrical characteristics STGIPS30C60T-H
10/19 DocID025530 Rev 3
Note: X: don’t care
Table 11. Shut down characteristics (V
CC
= 15 V unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
t
sd
Shut down to high / low side
driver propagation delay V
OUT
= 0, Vboot
= V
CC
,
V
IN
= 0 to 3.3 V 50 125 200 ns
Table 12. Truth table
Condition Logic input (V
I
) Output
SD LIN HIN LVG HVG
Shutdown enable
half-bridge tri-state LXXLL
Interlocking
half-bridge tri-state HHHL L
0 ‘’logic state”
half-bridge tri-state HLLLL
1 “logic state”
low side direct driving HHLHL
1 “logic state”
high side direct driving HLHLH
DocID025530 Rev 3 11/19
STGIPS30C60T-H Electrical characteristics
19
3.1.1 NTC thermistor
Equation 1: resistance variation vs. temperature
Where T are temperatures in Kelvins
Figure 7. NTC resistance vs. temperature
Figure 8. NTC resistance vs. temperature (zoom)
Table 13. NTC thermistor
Symbol Parameter Test conditions Min. Typ. Max. Unit.
R
25
Resistance T
= 25°C 4.7 kΩ
R
125
Resistance T
= 125°C 160 Ω
B B-constant T
= 25°C to 85°C 3950 K
T Operating temperature -40 150 °C
RT() R
25
e
B1
T
--- 1
298
----------


=
AM16299v1
0
20
40
60
80
100
120
140
160
180
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 (°C)
NTC [kΩ]
MIN.
MAX.
CENTER
AM17098v1
(°C)
NTC [kΩ
]
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800
50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145
MIN.
MAX.
CENTER
ovmwrlsu INVERLOCKING . DEAD m: we . an an wt: 1 ‘ ‘ gundr‘vzrcuwuuofl' ‘ sunnymmmor I‘_‘_,1 mwmssrmmm‘. 1 " mmamncnmms) ‘ ‘ comamsmmmsss m lg 1 5" stcHRuNous (‘1 new ms comm sweNAl s FnGFs MN l—V—11 '—| um um ‘ we ‘ P—k a... a my .mmcr; ‘4—u yahdrwyuu‘vlni on 1 Manama: mlenE) 1 my Emmi vmrsnYEy 1 caNTRostGN/stEDGES m 1 I‘ I ‘ Nowovmwgo ‘ aurwsmmsmuwg. M ‘ 1 new ms ‘ um nnm m ‘ P—H a... an." mm arr ~—>} m. .m.. ”mm on n—u Mmmm sma1 ‘ mmmm. Ynsy1 1 CoNTROLS‘GNALS guess ‘ ‘ . NDT ovERLAFPED‘ m ‘ 1 | I 1 ouTs‘DE ms new ma ' ‘ nmzcwmvwa M 1—1 ‘1 m m ‘ we ~—~1 l—l l—k—n an..." “mica - nuanyuummst mmmmm sum ~—. (W mm mm,
Electrical characteristics STGIPS30C60T-H
12/19 DocID025530 Rev 3
3.2 Waveform definitions
Figure 9. Dead time and interlocking waveform definitions
INTERLOCKING
INTERLOCKING
G
mru Vhaat u MNU wrv Va Vhaat v aw M Hm ‘ wry Vhaut w UNU MNH n EW 1 N —“<>—w CDNTRDLLER
DocID025530 Rev 3 13/19
STGIPS30C60T-H Applications information
19
4 Applications information
Figure 10. Typical application circuit
AM09321v2
Applications information STGIPS30C60T-H
14/19 DocID025530 Rev 3
4.1 Recommendations
Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull down resistor is built-in
for each input. If an external RC filter is used, for noise immunity, pay attention to the
variation of the input signal level.
To prevent the input signals oscillation, the wiring of each input should be as short as
possible.
By integrating an application specific type HVIC inside the module, direct coupling to
MCU terminals without any opto-coupler is possible.
Each capacitor should be located as nearby the pins of IPM as possible.
Low inductance shunt resistors should be used for phase leg current sensing.
Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitor mounted close to the module
pins will further improve performance.
The SD signal should be pulled up to 5 V / 3.3 V with an external resistor.
Note: For further details refer to AN3338.
Table 14. Recommended operating conditions
Symbol Parameter Conditions Value Unit
Min. Typ. Max.
V
PN
Supply Voltage Applied between P-Nu,Nv,Nw 300 400 V
V
CC
Control supply voltage Applied between V
CC
-GND 13.5 15 18 V
V
BS
High side bias voltage Applied between V
BOOTi
-OUT
i
for
i=U,V,W 13 18 V
t
dead
Blanking time to
prevent Arm-short For each input signal 1.5 µs
f
PWM
PWM input signal -40°C < T
c
< 100°C
-40°C < T
j
< 125°C 20 kHz
T
C
Case operation
temperature 100 °C
BO 770M WE W llliiiinll
DocID025530 Rev 3 15/19
STGIPS30C60T-H Package information
19
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK
®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
is an ST trademark.
Please refer to dedicated technical note TN0107 for mounting instructions.
5.1 SDIP-25L package information
Figure 11. SDIP-25L package outline
B
Package information STGIPS30C60T-H
16/19 DocID025530 Rev 3
Table 15. SDIP-25L mechanical data
Dim. mm
Min. Typ. Max.
A 43.90 44.40 44.90
A1 1.15 1.35 1.55
A2 1.40 1.60 1.80
A3 38.90 39.40 39.90
B 21.50 22.00 22.50
B1 11.25 11.85 12.45
B2 24.83 25.23 25.63
C 5.00 5.40 6.00
C1 6.50 7.00 7.50
C2 11.20 11.70 12.20
C3 2.90 3.00 3.10
e 2.15 2.35 2.55
e1 3.40 3.60 3.80
e2 4.50 4.70 4.90
e3 6.30 6.50 6.70
D 33.30
D1 5.55
E11.20
E1 1.40
F 0.85 1.00 1.15
F1 0.35 0.50 0.65
R 1.55 1.75 1.95
T 0.45 0.55 0.65
V0° 6°
DocID025530 Rev 3 17/19
STGIPS30C60T-H Package information
19
5.2 Packing information
Figure 12. SDIP-25L packing information
AM10488v1
Base quantity: 11 pcs
Bulk quantity: 132 pcs
8123127_E
Revision history STGIPS30C60T-H
18/19 DocID025530 Rev 3
6 Revision history
Table 16. Document revision history
Date Revision Changes
25-Nov-2013 1Initial release.
14-May-2014 2
Updated Table 3: Inverter part, Table 6: Thermal data, Table 7:
Inverter part and Section 5.2: Packing information.
Minor text changes.
10-Apr-2015 3
Minor text edits throughout document
Updated Figure 2: Pin layout (bottom view)
Updated Section 5: Package information
DocID025530 Rev 3 19/19
STGIPS30C60T-H
19
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved