XC822/824 Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
i L0 mneon
Data Sheet
V1.2 2011-10
Microcontrollers
XC822/824
8-Bit Single-Chip Microcontroller
Edition 2011-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
(ifineon
Data Sheet
V1.2 2011-10
Microcontrollers
XC822/824
8-Bit Single-Chip Microcontroller
@180“
XC822/824
Data Sheet V1.2, 2011-10
XC822/824 Data Sheet
Revision History: V1.2 2011-10
Previous Versions: V1.1
Page Subjects (major changes since last revision)
Page 3 A new variant (SAK-XC822MT-0FRA) was added in Table 2.
Page 19 Added a new chip identification number for variant (SAK-XC822MT-0FRA)
in Table 5.
We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com
/ @fineon
XC822/824
Table of Contents
Data Sheet 1 V1.2, 2011-10
1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 JTAG ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3.1 ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3.2 Out of Range Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.5 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Oscillator Timing and Wake-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.5.1 SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.5.2 SSC Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.6 SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Package and Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table of Contents
/ @fineon
XC822/824
Table of Contents
Data Sheet 2 V1.2, 2011-10
@180"
XC822/824
Summary of Features
Data Sheet 1 V1.2, 2011-10
1 Summary of Features
The XC822/824 has the following features:
High-performance XC800 Core
compatible with standard 8051 processor
two clocks per machine cycle architecture (for memory access without wait state)
two data pointers
On-chip memory
8 Kbytes of Boot ROM, Library ROM and User routines
256 bytes of RAM
256 bytes of XRAM
2/4 Kbytes of Flash (includes memory protection strategy)
I/O port supply at 2.5 V - 5.5 V and core logic supply at 2.5 V (generated by
embedded voltage regulator)
Figure 1 XC822/824 Functional Units
Power-on reset generation
Brownout detection for IO supply and core logic supply
48 MHz on-chip OSC for clock generation
Loss-of-Clock detection
(more features on next page)
Port 0
Port 1
Port 2
XC800 Core
UART
ADC
10-bit
4-channel
Boot ROM
8K Bytes
XRAM
256 Bytes
RAM
256 Bytes
On-Chip
Debug
Support
Timer 0
16-bit Timer 1
16-bit Timer 2
16-bit Watchdog
Timer
SSC
2/4K Bytes
Flash
Capture/Compare Unit
16-bit
Compare Unit
16-bit
7-bit Digital I/O
6-bit Digital I/O
4-bit Digital/
Analog Input
IIC
MDU
LED and Touch Sense
Controller
Real-Time
Clock
/ @fineon
XC822/824
Summary of Features
Data Sheet 2 V1.2, 2011-10
Features: (continued)
Power saving modes
idle mode
power-down mode with wake-up capability via real-time clock interrupt
clock gating control to each peripheral
Programmable 16-bit Watchdog Timer (WDT) running on independent oscillator with
programmable window feature for refresh operation and warning prior to overflow
Three ports
Up to 17 pins as digital I/O
4 pin as digital/analog input
4-channel, 10-bit ADC
support up to 3 differential input channel
results filtering by data reduction or digital low-pass filter, for up to 13-bit results
Up to 4 channels, Out of range comparator
Three 16-bit timers
Timer 0 and Timer 1 (T0 and T1)
Timer 2 (T2)
Periodic wake-up timer
Multiplication/Division Unit for arithmetic operations (MDU)
Capture and Compare unit for PWM signal generation (CCU6)
A full-duplex or half-duplex serial interface (UART)
Synchronous serial channel (SSC)
Inter-IC (IIC) serial interface
LED and Touch-sense Controller (LEDTSCU)
On-chip debug support via single pin DAP interface (SPD)
• Packages:
– PG-DSO-20
– PG-TSSOP-16
Temperature range TA:
SAF (-40 to 85 °C)
SAX (-40 to 105 °C)
SAK (-40 to 125 °C)
@180“
XC822/824
Summary of Features
Data Sheet 3 V1.2, 2011-10
XC822/824 Variant Devices
The XC822/824 product family features devices with different configurations, program
memory sizes, packages options and temperature profiles, to offer cost-effective
solutions for different application requirements.
The list of XC822/824 device configurations are summarized in Table 1. The type of
packages available are TSSOP-16 for XC822 and DSO-20 for XC824.
Table 2 shows the device sales type available, based on above device.
Table 1 Device Configuration
Device Name MDU Module LEDTSCU Module
XC822/824 No No
XC822/824M Yes No
XC822/824T No Yes
XC822/824MT Yes Yes
Table 2 Device Profile
Sales Type Device
Type Program
Memory
(Kbytes)
Temp-
erature
Profile
(°C)
Package
Type Quality
Profile
SAF-XC822T-0FRI Flash 2 -40 to 85 PG-TSSOP-16 Industrial
SAF-XC822-1FRI Flash 4 -40 to 85 PG-TSSOP-16 Industrial
SAF-XC822T-1FRI Flash 4 -40 to 85 PG-TSSOP-16 Industrial
SAF-XC822M-1FRI Flash 4 -40 to 85 PG-TSSOP-16 Industrial
SAF-XC822MT-1FRI Flash 4 -40 to 85 PG-TSSOP-16 Industrial
SAF-XC824M-1FGI Flash 4 -40 to 85 PG-DSO-20 Industrial
SAF-XC824MT-1FGI Flash 4 -40 to 85 PG-DSO-20 Industrial
SAX-XC824M-1FGI Flash 4 -40 to 105 PG-DSO-20 Industrial
SAK-XC824M-1FGI Flash 4 -40 to 125 PG-DSO-20 Industrial
SAF-XC822-1FRA Flash 4 -40 to 85 PG-TSSOP-16 Automotive
SAF-XC822MT-1FRA Flash 4 -40 to 85 PG-TSSOP-16 Automotive
SAK-XC822MT-0FRA Flash 2 -40 to 125 PG-TSSOP-16 Automotive
SAK-XC822-1FRA Flash 4 -40 to 125 PG-TSSOP-16 Automotive
SAK-XC822MT-1FRA Flash 4 -40 to 125 PG-TSSOP-16 Automotive
/ @fineon
XC822/824
Summary of Features
Data Sheet 4 V1.2, 2011-10
As this document refers to all the derivatives, some description may not apply to a
specific product. For simplicity, all versions are referred to by the term XC822/824
throughout this document.
Ordering Information
The ordering code for Infineon Technologies microcontrollers provides an exact
reference to the required product. This ordering code identifies:
The derivative itself, i.e. its function set, the temperature range, and the supply
voltage
The package and the type of delivery
For the available ordering codes for the XC822/824, please refer to your responsible
sales representative or your local distributor.
@180" 9% 5% r—\ 5%.
XC822/824
General Device Information
Data Sheet 5 V1.2, 2011-10
2 General Device Information
Chapter 2 contains the block diagram, pin configurations, definitions and functions of the
XC822/824.
2.1 Block Diagram
The block diagram of the XC822/824 is shown in Figure 2.
Figure 2 XC822/824 Block Diagram
ADC
Port 0Port 1Port 2
MDU SSC
RTC
8-Kbyte
Boot ROM
1)
256-byte RAM
+
64-byte monitor
RAM
256-byte XRAM
2/4-Kbyte
Flash
XC800 Core
T0 & T1 UART
1) Includes 1-Kbyte monitor ROM
P0.0 - P0.6
P1.0 - P1.5
P2.0 – P2.3
Clock Generator
48 MHz
On-chip OSC
Internal Bus
V
DDP
V
SSP
V
SSC
XC822/824
Timer 2
CCU6WDT
OCDS
IIC
LED and Touch
Sense Controller
SCU
EVR
75 KHz
On-chip OSC
@180" V
XC822/824
General Device Information
Data Sheet 6 V1.2, 2011-10
2.2 Logic Symbol
The logic symbol of the XC822/824 is shown in Figure 3.
Figure 3 XC822/824 Logic Symbol
XC824
V
DDP
V
SSP
V
DDC
Port 0 7-Bit
Port 1 6-Bit
Port 2 4-Bit
XC822
V
DDP
V
SSP
V
DDC
Port 0 7-Bit
Port 1 2-Bit
Port 2 4-Bit
@ineon 33333333 EEEEEEEE
XC822/824
General Device Information
Data Sheet 7 V1.2, 2011-10
2.3 Pin Configuration
The pin configuration of the XC822 in Figure 4.
Figure 4 XC822 Pin Configuration, PG-TSSOP-16 Package (top view)
P1.0/SPD_1/RXD_2/T2EX_2/EXINT0_2/
COL0_0/COUT60_0/TXD_1
P0.6/SPD_0/RXD_1/SDA_0/MTSR_1/MRST_0/
EXINT0_1/T2EX_0/LINE6/TSIN6/TXD_0/
COL2_1/COLA_1
P0.5/RXD_0/RTCCLK/MTSR_0/MRST_1/
EXINT0_0/LINE5/TSIN5/COUT62_1/TXD_3/
COL1_1/EXF2_2
P0.1/T0_0/CC61_1/MTSR_3/MRST_2/
T13HR_0/CCPOS1_0/LINE1/TSIN1
P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/
LINE2/TSIN2
P0.0/T2_0/T13HR_1/MTSR_2/
MRST_3/T12HR_0/CCPOS0_0/LINE0/
TSIN0/COUT61_1
V
DDP
V
SSP
V
DDC
P2.1/CCPOS1_1/RXD_3/MTSR_4/T0_1/
EXINT1_1/AN1
P1.2/EXINT4/COL2_0/COUT61_0/
COUT63_0
P2.2/CCPOS2_1/T12HR_3/T13HR_3/
SCK_1/T1_1/EXINT2/AN2
P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/
T2_1/EXINT0_3/AN0
P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3
1
2
3
4
5
6
7
8
15
14
13
12
11
10
9
16
XC822
P0.3/CC60_1/SDA_1/CTRAP_0/
LINE3/TSIN3
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/
CTRAP_1/LINE4/TSIN4/EXF2_0/COL0_1/
COL3_1/COLA_2
3333333333 Ineon nf EEEEEEEEEE
XC822/824
General Device Information
Data Sheet 8 V1.2, 2011-10
The pin configuration of the XC824 in Figure 5.
Figure 5 XC824 Pin Configuration, PG-DSO-20 Package (top view)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
17
XC824
9
10
18
19
20
P1.0/SPD_1/RXD_2/T2EX_2/EXINT0_2/
COL0_0/COUT60_0/TXD_1
P1.4/EXINT5/COL4/COUT62_0/
COUT63_1
P0.6/SPD_0/RXD_1/SDA_0/MTSR_1/
MRST_0/EXINT0_1/T2EX_0/LINE6/TSIN6/
TXD_0/COL2_1/COLA_1
P1.5/CC62_0/COL5/COLA_0
P2.1/CCPOS1_1/RXD_3/MTSR_4/T0_1/
EXINT1_1/AN1
P1.2/EXINT4/COL2_0/COUT61_0/
COUT63_0
P2.2/CCPOS2_1/T12HR_3/T13HR_3/
SCK_1/T1_1/EXINT2/AN2
P1.1/CC60_0/COL1_0/TXD_2
P2.0/CCPOS0_1/T12HR_2/T13HR_2/
T2EX_3/T2_1/EXINT0_3/AN0
P2.3/CCPOS0_2/CTRAP_2/T2_2/
EXINT3/AN3
P0.5/RXD_0/RTCCLK/MTSR_0/MRST_1/
EXINT0_0/LINE5/TSIN5/COUT62_1/TXD_3/
COL1_1/EXF2_2
P1.3/CC61_0/COL3_0/CC61_0/EXF2_1
P0.1/T0_0/CC61_1/MTSR_3/MRST_2/
T13HR_0/CCPOS1_0/LINE1/TSIN1
P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/
LINE2/TSIN2
P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/
T12HR_0/CCPOS0_0/LINE0/TSIN0/COUT61_1
V
DDP
V
SSP
V
DDC
P0.3/CC60_1/SDA_1/CTRAP_0/
LINE3/TSIN3
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/
CTRAP_1/LINE4/TSIN4/EXF2_0/COL0_1/
COL3_1/COLA_2
@180“
XC822/824
General Device Information
Data Sheet 9 V1.2, 2011-10
2.4 Pin Definitions and Functions
The functions and default states of the XC822/824 external pins are provided in Table 3.
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
P0 I/O Port 0
Port 0 is a bidirectional general purpose I/O port.
It can be used as alternate functions for
LEDTSCU, Timer 0, 1 and 2, SSC, CCU6, IIC,
SPD and UART.
P0.0 15/12 Hi-Z T2_0 Timer 2 Input
T13HR_1 CCU6 Timer 13 Hardware Run
Input
MTSR_2 SSC Master Transmit Output/
Slave Receive Input
MRST_3 SSC Master Receive Input
T12HR_0 CCU6 Timer 12 Hardware Run
Input
CCPOS0_0 CCU6 Hall Input 0
TSIN0 Touch-sense Input 0
LINE0 LED Line 0
COUT61_1 Output of Capture/Compare
Channel 1
@180“
XC822/824
General Device Information
Data Sheet 10 V1.2, 2011-10
P0.1 16/13 Hi-Z T0_0 Timer 0 Input
CC61_1 Input/Output of Capture/Compare
channel 1
MTSR_3 SSC Slave Receive Input
MRST_2 SSC Master Receive Input/
Slave Transmit Output
T13HR_0 CCU6 Timer 13 Hardware Run
Input
CCPOS1_0 CCU6 Hall Input 1
TSIN1 Touch-sense Input 1
LINE1 LED Line 1
P0.2 17/14 Hi-Z T1_0 Timer 1 Input
CC62_1 Input/Output of Capture/Compare
channel 2
SCL_1 IIC Clock Line
CCPOS2_0 CCU6 Hall Input 2
TSIN2 Touch-sense Input 2
LINE2 LED Line 2
P0.3 18/15 Hi-Z CC60_1 Input/Output of Capture/Compare
channel 0
SDA_1 IIC Data Line
CTRAP_0 CCU6 Trap Input
TSIN3 Touch-sense Input 3
LINE3 LED Line 3
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
@180“
XC822/824
General Device Information
Data Sheet 11 V1.2, 2011-10
P0.4 19/16 PD T2EX_1 Timer 2 External Trigger Input
SCK_0 SSC Clock Input/Output
SCL_0 IIC Clock Line
CTRAP_1 CCU6 Trap Input
EXINT1_0 External Interrupt Input 1
TSIN4 Touch-sense Input 4
LINE4 LED Line 4
EXF2_0 Timer 2 Overflow Flag
COL0_1 LED Column 0
COL3_1 LED Column 3
COLA_2 LED Column A
P0.5 20/1 Hi-Z RXD_0 UART Receive Input
RTCCLK RTC External Clock Input
MTSR_0 SSC Master Transmit Output/
Slave Receive Input
MRST_1 SSC Master Receive Input
EXINT0_0 External Interrupt Input 0
TSIN5 Touch-sense Input 5
LINE5 LED Line 5
COUT62_1 Output of Capture/Compare
Channel 2
TXD_3 UART Transmit Output/
2-wire UART BSL Transmit Output
COL1_1 LED Column 1
EXF2_2 Timer 2 Overflow Flag
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
@180“
XC822/824
General Device Information
Data Sheet 12 V1.2, 2011-10
P0.6 1/2 PU SPD_0 SPD Input/Output
RXD_1 UART Receive Input/
UART BSL Receive Input
SDA_0 IIC Data Line
MTSR_1 SSC Slave Receive Input
MRST_0 SSC Master Receive Input/
Slave Transmit Output
EXINT0_1 External Interrupt Input 0
T2EX_0 Timer 2 External Trigger Input
TSIN6 Touch-sense Input 6
LINE6 LED Line 6
TXD_0 UART Transmit Output/
1-wire UART BSL Transmit Output
COL2_1 LED Column 2
COLA_1 LED Column A
P1 I/O Port 1
Port 1 is a bidirectional general purpose I/O port.
It can be used as alternate functions for CCU6,
LEDTSCU, SPD, UART and Timer 2.
P1.0 8/7 Hi-Z SPD_1 SPD Input/Output
RXD_2 UART Receive Input
T2EX_2 Timer 2 External Trigger Input
EXINT0_2 External Interrupt Input 0
COL0_0 LED Column 0
COUT60_0 Output of Capture/Compare
Channel 0
TXD_1 UART Transmit Output
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
@180“
XC822/824
General Device Information
Data Sheet 13 V1.2, 2011-10
P1.1 9/- Hi-Z CC60_0 Input/Output of Capture/Compare
channel 0
COL1_0 LED Column 1
TXD_2 UART Transmit Output
P1.2 10/8 Hi-Z EXINT4 External Interrupt Input 4
COL2_0 LED Column 2
COUT61_0 Output of Capture/Compare
channel 1
COUT63_0 Output of Capture/Compare
channel 3
P1.3 11/- Hi-Z CC61_0 Input/Output of Capture/Compare
channel 1
COL3_0 LED Column 3
EXF2_1 Timer 2 Overflow Flag
P1.4 2/- Hi-Z EXINT5 External Interrupt Input 5
COL4 LED Column 4
COUT62_0 Output of Capture/Compare
channel 2
COUT63_1 Output of Capture/Compare
channel 3
P1.5 3/- Hi-Z CC62_0 Input/Output of Capture/Compare
channel 2
COL5 LED Column 5
COLA_0 LED Column A
P2 IPort 2
Port 2 is a general purpose input-only port. It can
be used as inputs for A/D Converter and out of
range comparator, CCU6, Timer 2, SSC and
UART.
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
@180“
XC822/824
General Device Information
Data Sheet 14 V1.2, 2011-10
P2.0 7/6 Hi-Z CCPOS0_1 CCU6 Hall Input 0
T12HR_2 CCU6 Timer 12 Hardware Run
Input
T13HR_2 CCU6 Timer 13 Hardware Run
Input
T2EX_3 Timer 2 External Trigger Input
T2_1 Timer 2 Input
EXINT0_3 External Interrupt Input 0
AN0 Analog Input 0 /
Out of range comparator channel 0
P2.1 6/5 Hi-Z CCPOS1_1 CCU6 Hall Input 1
RXD_3 UART Receive Input
MTSR_4 Slave Receive Input
T0_1 Timer 0 Input
EXINT1_1 External Interrupt Input 1
AN1 Analog Input 1 /
Out of range comparator channel 1
P2.2 5/4 Hi-Z CCPOS2_1 CCU6 Hall Input 2
T12HR_3 CCU6 Timer 12 Hardware Run
Input
T13HR_3 CCU6 Timer 13 Hardware Run
Input
SCK_1 SSC Clock Input/Output
T1_1 Timer 1 Input
EXINT2 External Interrupt Input 2
AN2 Analog Input 2 /
Out of range comparator channel 2
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
@180“
XC822/824
General Device Information
Data Sheet 15 V1.2, 2011-10
2.5 Memory Organization
The XC822/824 CPU operates in the following five address spaces:
8 Kbytes of Boot ROM, Library ROM and User routines
256 bytes of internal RAM
256 bytes of XRAM
(XRAM can be read/written as program memory or external data memory)
A 128-byte Special Function Register area
2/4 Kbytes of Flash
Figure 6 illustrates the memory address spaces of the 2 Kbyte Flash devices. There are
two 1-Kbyte sectors in this device. Figure 7 illustrates the memory address spaces of
the 4 Kbyte Flash devices. This device has two 1-Kbyte sectors, two 512-byte sectors,
two 256-byte sectors and four 128-byte sectors. Figure 8 shows the Flash sectorization
for 2 Kbyte and 4 Kbyte Flash devices.
P2.3 4/3 Hi-Z CCPOS0_2 CCU6 Hall Input 0
CTRAP_2 CCU6 Trap Input
T2_2 Timer 2 Input
EXINT3 External Interrupt Input 3
AN3 Analog Input 3 /
Out of range comparator channel 3
VDDP 12/9 I/O Port Supply (2.5 V - 5.5 V)
VDDC 14/11 Core Supply Output (2.5 V)
VSSP/
VSSC
13/10 I/O Port Ground/
Core Supply Ground
Table 3 Pin Definitions and Functions for XC822/824
Symbol Pin
Number
DSO20/
TSSOP16
Type Reset
State Function
@180“
XC822/824
General Device Information
Data Sheet 16 V1.2, 2011-10
Figure 6 Memory Map of XC822/824 with 2 Kbytes of Flash memory
@180“
XC822/824
General Device Information
Data Sheet 17 V1.2, 2011-10
Figure 7 Memory Map of XC822/824 with 4 Kbytes of Flash memory
@180“
XC822/824
General Device Information
Data Sheet 18 V1.2, 2011-10
Figure 8 Flash Bank Sectorization
2.6 JTAG ID
JTAG ID register is a read-only register located inside the JTAG module, and is used to
recognize the device(s) connected to the JTAG interface. Its content is shifted out when
INSTRUCTION register contains the IDCODE command (opcode 04H), and the same is
also true immediately after reset.
The JTAG ID register contents for the XC822/824 Flash devices are given in Table 4.
Note: The asterisk (*) above denotes all possible device configurations.
Table 4 JTAG ID Summary
Device Type Device Name JTAG ID
Flash XC822/824* 101B C083H
Sector 9: 128-byte
Sector 5: 256-byte
Sector 3: 512-byte
Sector 1: 1-Kbyte1)
Sector 0: 1-Kbyte1)
Sector 7: 128-byte
Sector 8: 128-byte
Sector 6: 128-byte
Sector 4: 256-byte
Sector 2: 512-byte
1x Flash Bank
1) 2 Kbyte Flash devices only has sector 0 and sector 1.
@180“
XC822/824
General Device Information
Data Sheet 19 V1.2, 2011-10
2.7 Chip Identification Number
The XC822/824 identity (ID) register is located at Page 1 of address B3H. The value of
ID register is 51H. However, for easy identification of product variants, the Chip
Identification Number, which is an unique number assigned to each product variant, is
available. The differentiation is based on the product and variant type information.
Two methods are provided to read a device’s Chip Identification number:
In-application subroutine, GET_CHIP_INFO
Boot-loader (BSL) mode A
Table 5 lists the Chip Identification numbers of XC822/824 device variants.
Table 5 Chip Identification Number
Product Variant Chip Identification Number
XC822T-0FR 51080343H
XC822MT-0FR 51080303H
XC822-1FR 51080163H
XC822T-1FR 51080143H
XC822M-1FR 51080123H
XC822MT-1FR 51080103H
XC824M-1FG 51080122H
XC824MT-1FG 51080102H
/ @fineon
XC822/824
Electrical Parameters
Data Sheet 20 V1.2, 2011-10
3 Electrical Parameters
Chapter 3 provides the characteristics of the electrical parameters which are
implementation-specific for the XC822/824.
3.1 General Parameters
The general parameters are described here to aid the users in interpreting the
parameters mainly in Section 3.2 and Section 3.3.
3.1.1 Parameter Interpretation
The parameters listed in this section represent partly the characteristics of the
XC822/824 and partly its requirements on the system. To aid interpreting the parameters
easily when evaluating them for a design, they are indicated by the abbreviations in the
“Symbol” column:
CC
These parameters indicate Controller Characteristics, which are distinctive
features of the XC822/824 and must be regarded for a system design.
SR
These parameters indicate System Requirements, which must be provided by the
microcontroller system in which the XC822/824 is designed in.
@180“
XC822/824
Electrical Parameters
Data Sheet 21 V1.2, 2011-10
3.1.2 Absolute Maximum Rating
Maximum ratings are the extreme limits to which the XC822/824 can be subjected to
without permanent damage.
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
During absolute maximum rating overload conditions (VIN >VDDP or VIN <VSS) the
voltage on VDDP pin with respect to ground (VSS) must not exceed the values
defined by the absolute maximum ratings.
Table 6 Absolute Maximum Rating Parameters
Parameter Symbol Limit Values Unit Notes
Min. Max.
Ambient temperature TA-40 125 °C under bias
Storage temperature TST -65 150 °C–
Junction temperature TJ-40 150 °C under bias
Voltage on power supply pin with
respect to VSS
VDDP -0.5 6 V
Input current on any pin during
overload condition IIN -10 10 mA
Absolute sum of all input currents
during overload condition
Σ|IIN|– 50 mA
@180“
XC822/824
Electrical Parameters
Data Sheet 22 V1.2, 2011-10
3.1.3 Operating Condition
The following operating conditions must not be exceeded in order to ensure correct
operation of the XC822/824. All parameters mentioned in the following tables refer to
these operating conditions, unless otherwise noted.
Table 7 Operating Condition Parameters
Parameter Symbol Limit Values Unit Notes/
Conditions
Min. Max.
Digital power supply voltage VDDP 3.0 5.5 V
2.5 3.0 V 1)
1) In this voltage range, limited operations are available in active mode. Operations in power save modes are fully
supported.
CPU Clock Frequency fCCLK 22.5 25.6 MHz typ. 24 MHz
7.5 8.5 MHz typ. 8 MHz
Ambient temperature TA-40 85 °C SAF-XC822/824...
-40 105 °C SAX-XC824...
-40 125 °C SAK-XC824...
@180“
XC822/824
Electrical Parameters
Data Sheet 23 V1.2, 2011-10
3.2 DC Parameters
The electrical characteristics of the DC Parameters are detailed in this section.
3.2.1 Input/Output Characteristics
Table 8 provides the characteristics of the input/output pins of the XC822/XC824.
Table 8 Input/Output Characteristics of XC822/XC824 (Operating Conditions
apply)
Parameter Symbol Limit Values Unit Test Conditions
Min. Max.
Output low voltage on
port pins VOLP CC – 1.0 V IOL = 25 mA (5 V)
IOL = 13 mA (3.3 V)
–0.4V
IOL = 10 mA (5 V)
IOL =5mA (3.3V)
Output high voltage
on port pins VOHP CC VDDP -
1.0 –VIOH =-15mA (5V)
IOH = -8 mA (3.3 V )
VDDP -
0.4 –VIOH = -5 mA (5 V)
IOH = -2.5 mA (3.3 V)
Input low voltage on
port pins VILP SR 0.3 ×
VDDP
V CMOS Mode
Input high voltage on
port pins VIHP SR 0.7 ×
VDDP
–VCMOS Mode
Input Hysteresis1) HYS CC 0.08 ×
VDDP
–VCMOS Mode (5V)
0.03 ×
VDDP
V CMOS Mode (3.3 V)
0.01 ×
VDDP
V CMOS Mode (2.5 V)
Pull-up current on
port pins IPUP CC – -20 μAVIH,min (5 V)
-150 – μAVIL,max (5 V)
–-5μAVIH,min (3.3 V)
-100 – μAVIL,max (3.3 V)
@180“
XC822/824
Electrical Parameters
Data Sheet 24 V1.2, 2011-10
Pull-down current on
port pins IPDP CC – 20 μAVIL,max (5 V)
150 – μAVIH,min (5 V)
–5μAVIL,max (3.3 V)
100 – μAVIH,min (3.3 V)
Input leakage current
on port pins2) IOZP CC -1 1 μA0 < VIN < VDDP,
TA125 °C
Overload current on
any pin IOVP SR -5 5 mA 3)
Absolute sum of
overload currents
Σ|IOV|SR 25 mA3)
Voltage on any pin
during VDDP power off VPO SR – 0.3 V 4)
Maximum current per
pin (excluding VDDP
and VSS)
IMSR -15 25 mA
Maximum current
into VDDP
IMVDDP SR – 80 mA 3)
Maximum current out
of VSS
IMVSS SR – 80 mA 3)
1) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta
stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching
due to external system noise.
2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.
3) Not subjected to production test, verified by design/characterization.
4) Not subjected to production test, verified by design/characterization. However, for applications with strict low
power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin
when VDDP is powered off.
Table 8 Input/Output Characteristics of XC822/XC824 (Operating Conditions
apply) (cont’d)
Parameter Symbol Limit Values Unit Test Conditions
Min. Max.
@180"
XC822/824
Electrical Parameters
Data Sheet 25 V1.2, 2011-10
3.2.2 Supply Threshold Characteristics
Table 9 provides the characteristics of the supply threshold in the XC822/824.
Figure 9 Supply Threshold Parameters
Table 9 Supply Threshold Parameters (Operating Conditions apply)
Parameters Symbol Limit Values Unit
Min. Typ. Max.
VDDP prewarning voltage1)2)
1) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.
Detection should be disabled for VDDP less than maximum of VDDPPW.
2) This parameter has a hysteresis of 50 mV.
VDDPPW CC 3.0 3.6 4.5 V
VDDP brownout voltage in active mode3)2)
3) Detection is enabled via SDCON register. Detection must be disabled for application with VDDP less than the
specified values.
VDDPBOA CC 2.65 2.75 2.87 V
VDDP brownout voltage in power down
mode2)3) VDDPBOPD CC 3.0 3.6 4.5 V
VDDP system reset release voltage2)4)
4) VDDPSRR and VDDCSRR must be met before the system reset is released.
VDDPSRR CC 2.7 2.8 2.92 V
VDDC prewarning voltage2)5)
5) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.
VDDCPW CC 2.3 2.4 2.48 V
VDDC brownout voltage in active mode2) VDDCBOA CC 2.25 2.3 2.42 V
VDDC brownout voltage in power down mode2) VDDCBOPD CC 1.35 1.5 1.95 V
VDDC system reset release voltage2)4) VDDCSRR CC 2.28 2.3 2.47 V
RAM data retention voltage VDDCRDR CC 1.1 V
VDDP
VDDC
V
DDPPW
/V
DDPBOPD
V
DDCSRR
V
DDCPW
V
DDCBOA
V
DDCRDR
5.0V
2.5V
V
DDCBOPD
V
DDPBOA
V
DDPSRR
@180“
XC822/824
Electrical Parameters
Data Sheet 26 V1.2, 2011-10
3.2.3 ADC Characteristics
The values in Table 10 are given for an analog power supply of 5.0 V. The ADC can be
used with an analog power supply down to 3 V. But in this case, analog parameters may
show a reduced performances. In the reduced voltage mode (2.5 V < VDDP < 3 V), the
ADC is not recommended to be used.
Table 10 ADC Characteristics (Operating Conditions apply; VDDP = 5 V)
Parameter Symbol Limit Values Unit Test Conditions /
Remarks
Min. Typ. Max.
Analog reference
voltage VAREF VDDP V Connect internally
to VDDP
Analog reference
ground VAGND VSSP V Connect internally
to VSSP
Alternate analog
reference ground VAGNDALT SR VSSP -
0.1 –2.5
1) V Connect to AN0 in
differential mode,
See Figure 10.
Internal voltage
reference VINTREF SR 1.19 1.23 1.28 V 3)
Analog input
voltage range VAIN SR VAGND VAREF V–
ADC clock fADCI 8 16 MHz internal analog
clock
Sample time tSCC (2 + INPCR0.STC) ×
tADCI
μs–
Conversion time tCCC See Section 3.2.3.1 μs–
Total unadjusted
error TUE2) CC ±1 LSB8 8-bit conversion
with internal
reference3)
+4/-1 LSB10 10-bit conversion
with internal
reference3)4)
+14/-2 LSB12 12-bit conversion
using the Low
Pass Filter 3)
Differential
Nonlinearity EADNL CC +1.5/ -1 LSB 10-bit conversion3)
@180“
XC822/824
Electrical Parameters
Data Sheet 27 V1.2, 2011-10
Integral
Nonlinearity EAINL CC ±1.5 LSB 10-bit conversion3)
Offset EAOFF CC +4 LSB 10-bit conversion3)
Gain EAGAIN CC -4 LSB 10-bit conversion3)
Switched
capacitance at an
analog input
CAINSW CC – 2 3 pF 3)5)
Total capacitance
at an analog input CAINT CC – 12 pF 3)5)
Input resistance
of an analog input RAIN CC – 1.5 2 kΩ3)
1) 1.2 V at VDDP =3.0V.
2) TUE is tested at VAREF =VDDP = 5.0 V and CPU clock (fSCLK, CCLK )=8MHz.
3) Not subject to production test, verified by design/characterization.
4) If a reduced positive reference voltage is used, TUE will increase. If the positive reference is reduced by a
factor of K, the TUE will increased by 1/K. Example:K = 0.8, 1/K = 1.25; 1.25 X TUE = 2.5 LSB10.
5) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before connecting the input to
the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than VAREF/2.
Table 10 ADC Characteristics (Operating Conditions apply; VDDP = 5 V)
Parameter Symbol Limit Values Unit Test Conditions /
Remarks
Min. Typ. Max.
@180“ T <9 vssp="">
XC822/824
Electrical Parameters
Data Sheet 28 V1.2, 2011-10
Figure 10 Differential like measurement with internal 1.2V voltage reference,
and CH0 gnd.
Figure 11 ADC Input Circuits
AD
converter
conversion
control
request
control
Interrupt
generation
ADC kernel
result
handling
V
1.2VREF
V
1.2VGND
va_altgnd
va_altref
AIN CH0
AIN CH1
AIN CH3
...
VSSP
REXT
Analog Input Circuitry
VAIN CEXT
ANx
CAINSW
RAIN, On
CAINT -C
AINSW
@180“
XC822/824
Electrical Parameters
Data Sheet 29 V1.2, 2011-10
3.2.3.1 ADC Conversion Timing
Conversion time, tC=tADC ×(1 + r ×(3+n+STC)), where
• r=CTC+3,
CTC = Conversion Time Control (GLOBCTR.CTC),
STC = Sample Time Control (INPCR0.STC),
n = 8 or 10 (for 8-bit and 10-bit conversion respectively),
tADC =1/fADC
3.2.3.2 Out of Range Comparator Characteristics
Table 11 below shows the Out of Range Comparator characteristics.
Table 11 Out of Range Comparator Characteristics (Operating Conditions
apply)
Parameter Symbol Limit Values Unit Remarks
Min. Typ. Max.
DC Switching
Level VSenseDC SR 60 125 270 mV Above VDDP
DC Hysteresis VSenseHys CC 30 mV 1)
1) Not subject to production test, verified by design/characterization.
Pulse Width tSensePW SR 300 ns ANx > VDDP1)
Switching Delay tSenseSD CC 400 ns ANx >= VDDP +350mV
1)
Pulse Switching
Level tSensePSL SR 250 mV @ 300 nsec1)
SR 60 mV @ 800 usec1)
@180“
XC822/824
Electrical Parameters
Data Sheet 30 V1.2, 2011-10
3.2.4 Flash Memory Parameters
The XC822/824 is delivered with all Flash sectors erased (read all zeros).
The data retention time of the XC822/824’s Flash memory (i.e. the time after which
stored data can still be retrieved) depends on the number of times the Flash memory has
been erased and programmed.
Note: Flash memory parameters are not subject to production test but verified by design
and/or characterization.
Table 12 Flash Timing Parameters (Operating Conditions apply)
Parameter Symbol Limit Values Unit Remarks
Min. Typ. Max.
Read access time
(per byte) tACC CC – 125 ns
Programming time
(per wordline) tPR CC – 2.2 ms
Erase time
(one or more sectors) tER CC – 120 ms
Flash wait states NWSFLASH CC 0 CPU clock = 8 MHz
1CPU clock=24MHz
Table 13 Flash Data Retention and Endurance (Operating Conditions apply)
Retention Endurance1)
1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance
data specified in Table 13 is valid only if the following conditions are fulfilled:
- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.
- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.
- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.
Size Remarks
20 years 1,000 cycles up to 8 Kbytes
5 years 10,000 cycles 1 Kbyte
2 years 70,000 cycles 512 bytes
2 years 100,000 cycles 128 bytes
@180“
XC822/824
Electrical Parameters
Data Sheet 31 V1.2, 2011-10
Table 14 Emulated Flash Data Retention and Endurance based on EEPROM
Emulation ROM Library (Operating Conditions apply)1)
1) EEPROM Emulation ROM Library can only be used in the 4 Kbyte Flash variant.
Retention Endurance2)
2) These values show the maximum endurance. Maximum endurance is the maximum possible unique data write
if each data update is only 31 bytes. Minimum endurance cycle is the maximum possible unique data write if
each data update is the same as the emulation size. The minimum endurance cycle can be calculated using
the formulae [(max. endurance)*(31)/(emulation size)].
Emulation Size Remarks
2 years 1,600,000 cycles 31 bytes
2 years 1,400,000 cycles 62 bytes
2 years 1,200,000 cycles 93 bytes
2 years 1,000,000 cycles 124 bytes
@180“
XC822/824
Electrical Parameters
Data Sheet 32 V1.2, 2011-10
3.2.5 Power Supply Current
Table 15 provides the characteristics of the power supply current in the XC822/824.
Table 15 Power Consumption Parameters1) 2)(Operating Conditions apply)
1) The typical values are measured at TA=+25°C and VDDP = 5 V and 3.3 V.
2) The maximum values are measured under worst case conditions (TA= + 125 °C and VDDC = 5 V) unless
stated otherwise.
Parameter Symbol Limit Values Unit Test Condition
Typ. Max.
Active Mode IDDPA 21 25 mA 5 V / 3.3 V 3)
3) IDDPA (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz
(CLKMODE=0).
14 18 mA 5 V / 3.3 V 4)
4) IDDPA (active mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz
(CLKMODE=1).
–5 mA2.5V
5)
5) This value is based on the maximum load capacity of EVR during VDDP = 2.5 V. Not subject to production test,
verified by design/characterisation.
Idle Mode IDDPI 16 20 mA 5 V / 3.3 V 6)
6) IDDPI (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals
enabled and running at 24 MHz (CLKMODE=0).
–5 mA2.5V
5)
Power Down Mode 1 IPDP1 35 μATA = 25
°
C7)
7) IPDP1 and IPDP2 is measured at 5 V and 3.3 V with: wake-up port is programmed to be input with either internal
pull devices enabled or driven externally to ensure no floating inputs.
–28μATA = 85
°
C7)8)9)
8) Not subject to production test, verified by design/characterisation.
9) IPDP1 and IPDP2 has a maximum values of 100 uA at TA= + 125 °C.
Power Down Mode 2 IPDP2 57 μATA = 25
°
C7)
–30μATA = 85
°
C7)8)
@180“
XC822/824
Electrical Parameters
Data Sheet 33 V1.2, 2011-10
Table 16 shows the maximum active current within the device in the reduced voltage
condition of 2.5 V < VDDP < 3.0 V. The active current consumption needs to be below the
specified values as according to the VDDP voltage. If the conditions are not met, a
brownout reset may be triggered.
Table 17 provides the active current consumption of some modules operating at 8 MHz
active mode, 3 V power supply at 25
°
C. The typical values shown are used as a
reference guide for device operating in reduced voltage conditions.
Table 16 Active Current Consumption in Reduced Voltage Condition
VDDP 2.5V 2.6V 2.7V 2.8V
Maximum active current 7mA 13mA 20mA 25mA
Table 17 Typical Active Current Consumption1) 2)
1) Modules that are controllable by programming the register PMCON1.
2) Not subject to production test, verified by design/characterisation.
Active Current
Consumption Symbol Limit Values Unit Test Condition
Typ.
Baseload current3)
3) Baseload current is measured when the device is running in user mode with an endless loop in the flash
memory. All modules in register PMCON1 are disabled.
ICPUDDC 5850 μA Modules including Core,
memories, UART, T0, T1 and
EVR. Disable ADC analog
(GLOBCTR.ANON = 0).
ADC4)
4) ADC active current is measured with: module enable, ADC analog clock at 8MHz, running in parallel
conversion request in autoscan mode for 4 channels
IADCDDC 3390 μA Set PMCON1.ADC_DIS to 0
and GLOBECTR. ANON to 1
SSC5)
5) SSC active curremt is measured with: module enabled, running in loop back mode at a baud rate of 1 MBaud
ISSCDDC 460 μA Set PMCON1.SSC_DIS to 0
CCU66)
6) CCU6 active current is measured with: module enabled, all timers running in 8 MHz, 6 PWM outputs are
generated.
ICCU6DDC 3320 μA Set PMCON1.CCU_DIS to 0
Timer 27)
7) Timer 2 active current is measured with: module enabled, timer running in 8 MHz
IT2DDC 200 μA Set PMCON1.T2_DIS to 0
MDU8)
8) MDU active current is measured with: module enabled, division operation was performed.
IMDUDDC 1260 μA Set PMCON1.MDU_DIS to 0
LEDTSCU9) ILEDDDC 520 μA Set PMCON1.LTS_DIS to 0
IIC10) IIICDDC 580 μA Set PMCON1.IIC_DIS to 0
/ @fineon
XC822/824
Electrical Parameters
Data Sheet 34 V1.2, 2011-10
9) LEDTSCU active curent is measured with: module enabled, counter running in 8 MHz.
10) IIC active current is measured with: module enabled, performing a master transmit with the master clock
running at 400 KHz.
@180" 80% ,i 90%
XC822/824
Electrical Parameters
Data Sheet 35 V1.2, 2011-10
3.3 AC Parameters
The electrical characteristics of the AC Parameters are detailed in this section.
3.3.1 Testing Waveforms
The testing waveforms for rise/fall time, output delay and output high impedance are
shown in Figure 12, Figure 13 and Figure 14.
Figure 12 Rise/Fall Time Parameters
Figure 13 Testing Waveform, Output Delay
Figure 14 Testing Waveform, Output High Impedance
10%
90%
10%
90%
V
SS
V
DDP
t
R
t
F
V
DDE
/ 2 Test Points V
DDE
/ 2
V
SS
V
DDP
V
Load
+ 0.1 V V
OH
- 0.1 V
Timing
Reference
Points
V
Load
- 0.1 V V
OL
- 0.1 V
@180"
XC822/824
Electrical Parameters
Data Sheet 36 V1.2, 2011-10
3.3.2 Output Rise/Fall Times
Table 18 provides the characteristics of the output rise/fall times in the XC822/824.
Figure 15 Rise/Fall Times Parameters
Table 18 Output Rise/Fall Times Parameters (Operating Conditions apply)
Parameter Symbol Limit Values Unit Test Conditions
Min. Max.
Rise/fall times on
Standard Pad1)2)
1) Rise/Fall time parameters are taken with 10% - 90% of supply.
2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.
tR, tF–10ns20 pF
3)4)
(5 V & 3.3 V).
3) Additional rise/fall time valid for CL=20pF-C
L= 100 pF @ 0.125 ns/pF at 5 V supply voltage.
4) Additional rise/fall time valid for CL=20pF-C
L= 100 pF.@ 0.225 ns/pF at 3.3 V supply voltage.
t
R
10%
90%
10%
90%
t
F
V
SS
V
DDC
@180“
XC822/824
Electrical Parameters
Data Sheet 37 V1.2, 2011-10
3.3.3 Oscillator Timing and Wake-up Timing
Table 19 provides the characteristics of the power-on reset, PLL and Wake-up timings
in the XC822/824.
3.3.4 On-Chip Oscillator Characteristics
Table 20 provides the characteristics of the 48 MHz oscillator in the XC822/824.
Table 19 Power-On Reset Wake-up Timing1) (Operating Conditions apply)
1) Not subject to production test, verified by design/characterisation.
Parameter Symbol Limit Values Unit Test Conditions
Min. Typ. Max.
48 MHz Oscillator
start-up time t48MOSCST CC – 13 μs
75 KHz Oscillator start-
up time t75KOSCST CC – 800 μs
Flash initialization time tFINT CC – 160 μs
Table 20 48 MHz Oscillator Characteristics (Operating Conditions apply)
Parameter Symbol Limit Values Unit Test Conditions
Min. Typ. Max.
Nominal frequency fNOM CC -0.5 % 48 +0.5% MHz under nominal
conditions1) after
trimming
1) Nominal condition: VDDC =2.5V, TA=+25°C.
Long term
frequency deviation
ΔfLT CC -2.0 3.0 % with respect to fNOM, over
lifetime and temperature
(0 °C to 85 °C)
-4.5 4.5 % with respect to fNOM, over
lifetime and temperature
(-40 °C to 125 °C)
Short term
frequency deviation
(over core supply
voltage2))
2) Core voltage supply, VDDC = 2.5 V ± 7.5%.
ΔfST CC -1 1 % with respect to fNOM,
within one LIN message
(< 10 ms … 100 ms)
@180“
XC822/824
Electrical Parameters
Data Sheet 38 V1.2, 2011-10
Table 21 provides the characteristics of the 75 kHz oscillator in the XC822/824.
Table 21 75 kHz Oscillator Characteristics (Operating Conditions apply)
Parameter Symbol Limit Values Unit Test Conditions
Min. Typ. Max.
Nominal frequency fNOM CC -1% 75 +1% KHz under nominal conditions1)
after trimming
1) Nominal condition: VDDC =2.5V, TA=+25°C.
Long term frequency
deviation
ΔfLT CC -4.5 4.5 % with respect to fNOM, over
lifetime and temperature
(-40 °C to 125 °C)
Short term
frequency deviation
ΔfST CC -1.5 1.5 % with respect to fNOM, over
core supply voltage of
2.5 V ± 7.5%
@180" ,1
XC822/824
Electrical Parameters
Data Sheet 39 V1.2, 2011-10
3.3.5 SSC Timing
3.3.5.1 SSC Master Mode Timing
Table 22 provides the SSC master mode timing in the XC822/824.
Figure 16 SSC Master Mode Timing
Table 22 SSC Master Mode Timing1) (Operating Conditions apply; CL = 50 pF)
1) Not subject to production test, verified by design/characterisation.
Parameter Symbol Limit Values Unit
Min. Max.
SCLK clock period t0CC 2 * TSSC2)
2) TSSCmin =T
CPU =1/fCPU. When fCPU = 24 MHz, t0 = 83.3 ns. TCPU is the CPU clock period.
–ns
MTSR delay from SCLK t1CC 0 6 ns
MRST setup to SCLK t2SR 20 ns
MRST hold from SCLK t3SR 0 ns
SSC_Tmg1
SCLK
1)
MTSR
1)
t
1
t
1
MRST
1)
t
3
Data
valid
t
2
t
1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
t
0
@180"
XC822/824
Electrical Parameters
Data Sheet 40 V1.2, 2011-10
3.3.5.2 SSC Slave Mode Timing
Table 23 provides the SSC slave mode timing in the XC822/824.
Figure 17 SSC Slave Mode Timing
Table 23 SSC Slave Mode Timing1) (Operating Conditions apply; CL = 50 pF)
1) Not subject to production test, verified by design/characterisation.
Parameter Symbol Limit Values Unit
Min. Max.
SCLK clock period t0SR 4 * TSSC2)
2) TSSCmin =T
CPU =1/fCPU. When fCPU = 24 MHz, t0 = 166.7 ns. TCPU is the CPU clock period.
–ns
MRST delay from SCLK t1CC 0 20 ns
MTSR setup to SCLK t2SR 46 ns
MTSR hold from SCLK t3SR 0 ns
t
2
t
3
t
1
SCLK
1)
MTSR
1)
MRST
1)
t
0
Data Valid
1)
This timing is based on the following setup : CON.PH = CON.PO = 0.
/ @fineon
XC822/824
Electrical Parameters
Data Sheet 41 V1.2, 2011-10
3.3.6 SPD Timing
The SPD interface will work with standard SPD tools having a sample/output clock fre-
quency deviation of +/- 5% or less. For further details please refer to application note
AP24004 in section SPD Timing Requirements.
Note: These parameters are no subject to product test but verified by design and/or
characterization.
Note: Operating Conditions apply.
@180“
XC822/824
Package and Quality Declaration
Data Sheet 42 V1.2, 2011-10
4 Package and Quality Declaration
Chapter 4 provides the information of the XC822/824 package and reliability section.
4.1 Package Parameters
Table 24 provides the thermal characteristics of the packages used in XC822 and
XC824 respectively.
Table 24 Thermal Characteristics of the Packages
Parameter Symbol Limit Values Unit Package Types
Min. Max.
Thermal resistance junction
case1)
1) The thermal resistances between the case and the ambient (RTCA) , the lead and the ambient (RTLA) are to be
combined with the thermal resistances between the junction and the case (RTJC), the junction and the lead
(RTJL) given above, in order to calculate the total thermal resistance between the junction and the ambient
(RTJA). The thermal resistances between the case and the ambient (RTCA), the lead and the ambient (RTLA)
depend on the external system (PCB, case) characteristics, and are under user responsibility.
The junction temperature can be calculated using the following equation: TJ=TA+RTJA ×PD, where the RTJA is
the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA
can be obtained from the upper four partial thermal resistances, by
a) simply adding only the two thermal resistances (junction lead and lead ambient), or
b) by taking all four resistances into account, depending on the precision needed.
RTJC CC - 36.2 K/W PG-TSSOP-16-1
- 34.3 K/W PG-DSO-20-45
Thermal resistance junction
lead1) RTJL CC - 356.6 K/W PG-TSSOP-16-1
- 36.2 K/W PG-DSO-20-45
infineon 44. -'i' 'B' u ‘ . a 3 §5 0 3 v9 -'-. fi'w' :‘9 9, o .- .— .._ A O 0' 065‘] Y! H I nus? I. 0 W01 1 0-2213-3 ' V . V ‘ “ 06”” -- :~;~_01MAA‘C 16! ,4 .0- 15 9 J”— . ‘ . nnnn <‘ 0.2316!="" imlm="" 1="" b="" "="" "p="" :a="" 5261="" v="" lndexmarking="" ':="" does="" not="" include="" plastic="" or="" metal="" protrusion="" of="" 0.15="" max.="" per="" side="" 9'="" does="" nal="" include="" camber="" protrusion="">
XC822/824
Package and Quality Declaration
Data Sheet 43 V1.2, 2011-10
4.2 Package Outline
Figure 18 and Figure 19 shows the package outlines of the XC822 (TSSOP-16) and
XC824 (DSO-20) devices respectively.
Figure 18 PG-TSSOP-16-1 Package Outline
infineon 2O Hflllflflll 1| I HHIEHHIIH 10 12.302” ‘ > Index Marking 1) Does not Include plastic or metal protrusion 01 0.15 max. pet side 2) Does no! include dambm protrusion of 0.05 max‘ pet side VG-Céomv' a r A; 4‘ u u 4, 2' 3' 711 1a m 4n #1 45 «we W»
XC822/824
Package and Quality Declaration
Data Sheet 44 V1.2, 2011-10
Figure 19 PG-DSO-20-45 Package Outline
@180“
XC822/824
Package and Quality Declaration
Data Sheet 45 V1.2, 2011-10
4.3 Quality Declaration
Table 25 shows the characteristics of the quality parameters in the XC822/824.
Table 25 Quality Parameters
Parameter Symbol Limit Values Unit Notes
Min. Max.
Operation Lifetime when
the device is used at the
three stated TJ1)
1) This lifetime refers only to the time when device is powered-on.
tOP1 - 1500 hours TJ=150°C
- 15000 hours TJ=110°C
- 1500 hours TJ=-40°C
Operation Lifetime when
the device is used at the
stated TJ1)
tOP2 - 131400 hours TJ=27°C
ESD susceptibility
according to Human Body
Model (HBM)
VHBM - 2000 V Conforming to
EIA/JESD22-
A114-B
ESD susceptibility
according to Charged
Device Model (CDM) pins
VCDM - 500 V Conforming to
JESD22-C101-C
www.infineon.com
Published by Infineon Technologies AG

Products related to this Datasheet

IC MCU 8BIT 4KB FLASH 16TSSOP
IC MCU 8BIT 4KB FLASH 16TSSOP
IC MCU 8BIT 4KB FLASH 16TSSOP
IC MCU 8BIT 4KB FLASH 16TSSOP
IC MCU 8BIT 2KB FLASH 16TSSOP
IC MCU 8BIT 4KB FLASH 16TSSOP