APT75GP120JDQ3 Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
ADVANCED — A POWER TECHNOLOGY {’1 \ 5» ‘Apr Website - hnpy/wwmauvancedpowemom“
050-7458 Rev A 10-2005
APT75GP120JDQ3
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 1250µA)
Gate Threshold Voltage (VCE = VGE, IC = 2.5mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 75A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 75A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
Symbol
V(BR)CES
VGE(TH)
VCE(ON)
ICES
IGES
Units
Volts
µA
nA
Symbol
VCES
VGE
IC1
IC2
ICM
RBSOA
PD
TJ,TSTG
TL
APT75GP120JDQ3
1200
±20
128
57
300
300A @ 960V
543
-55 to 150
300
UNIT
Volts
Amps
Watts
°C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ TC = 25°C
Continuous Collector Current @ TC = 110°C
Pulsed Collector Current 1 @ TC = 150°C
Reverse Bias Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
MIN TYP MAX
1200
3 4.5 6
3.3 3.9
3.0
1250
5500
±100
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
Low Conduction Loss 50 kHz operation @ 800V, 20A
Low Gate Charge 20 kHz operation @ 800V, 44A
Ultrafast Tail Current shutoff RBSOA Rated
POWER MOS 7® IGBT
1200V
APT75GP120JDQ3
®
C
E
G
SOT-227
ISOTOP
®file # E145592
"UL Recognized"
GE
E
C
O®©® ® ®
050-7458 Rev A 10-2005
APT75GP120JDQ3
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
DYNAMIC CHARACTERISTICS
Symbol
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
RBSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 600V
IC = 75A
TJ = 150°C, RG = 5Ω, VGE =
15V, L = 100µH,VCE = 960V
Inductive Switching (25°C)
VCC = 600V
VGE = 15V
IC = 75A
RG = 5
TJ = +25°C
Inductive Switching (125°C)
VCC = 600V
VGE = 15V
IC = 75A
RG = 5
TJ = +125°C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4 4
Turn-on Switching Energy (Diode) 55
Turn-off Switching Energy 6
MIN TYP MAX
7035
460
80
7.5
320
50
140
300
20
40
165
55
1620
4100
2500
20
40
245
115
1620
5850
4820
UNIT
pF
V
nC
A
ns
µJ
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
°C/W
gm
Volts
MIN TYP MAX
.23
.56
29.2
2500
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)
Symbol
RθJC
RθJC
WT
VIsolation
050-7458 Rev A 10-2005
APT75GP120JDQ3
TYPICAL PERFORMANCE CURVES
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A)
VOLTAGE (NORMALIZED)
IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
160
140
120
100
80
60
40
20
0
250
200
150
100
50
0
5
4
3
2
1
0
1.10
1.05
1.00
0.95
0.90
160
140
120
100
80
60
40
20
0
16
14
12
10
8
6
4
2
0
5.0
4.0
3.0
2.0
1.0
0
180
160
140
120
100
80
60
40
20
0
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TJ = 125°C
TJ = 25°C TJ = 125°C
TJ = 25°C
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 4 5 6 7 8 9 10 0 50 100 150 200 250 300 350
6 8 10 12 14 16 0 25 50 75 100 125
-50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150
VCE = 960V
VCE = 600V
VCE = 240V
IC = 75A
TJ = 25°C
IC = 150A
IC = 75A
IC = 37.5A
IC = 150A
IC = 75A
IC = 37.5A
VGE = 15V
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 10V
250µs PULSE TEST
<0.5 % DUTY CYCLE
, // >\ / \\ // vGE :‘sv Tl: \‘ fl 1 {Am :zmmve \ x x x x \ TJ=zsvcveE= \ \ \ / \ \ \ x / / / / // I / / //// // / / ”—54 / /« ‘ :://
050-7458 Rev A 10-2005
APT75GP120JDQ3
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
VCE = 600V
RG = 5
L = 100 µH
SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) tr, RISE TIME (ns) td(ON), TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (µJ) EOFF, TURN OFF ENERGY LOSS (µJ) tf, FALL TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns)
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current
RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature
VCE = 600V
VGE = +15V
RG = 5
RG = 5, L = 100µH, VCE = 600V
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5
L = 100 µH
30
20
10
0
100
80
60
40
20
0
15000
10000
5000
0
20000
15000
10000
5000
0
VGE = 15V
VCE = 600V
VGE = +15V
RG = 5
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
0 10 20 30 40 50 0 25 50 75 100 125
RG = 5, L = 100µH, VCE = 600V
TJ = 25 or 125°C,VGE = 15V
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
350
300
250
200
150
100
50
0
160
140
120
100
80
60
40
20
0
12000
10000
8000
6000
4000
2000
0
15000
12500
10000
7500
5000
2500
0
TJ = 125°C,VGE =15V
TJ = 25°C,VGE =15V
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
Eon2,150A
Eoff,150A
Eon2,75A
Eoff,75A
Eon2,37.5A
Eoff,37.5A
VCE = 600V
VGE = +15V
TJ = 125°C
VCE = 600V
VGE = +15V
RG = 5
Eon2,150A
Eoff,150A
Eoff,75A
Eon2,75A
Eon2,37.5A
Eoff,37.5A
050-7458 Rev A 10-2005
APT75GP120JDQ3
TYPICAL PERFORMANCE CURVES
0.25
0.20
0.15
0.10
0.05
0
ZθJC, THERMAL IMPEDANCE (°C/W)
0.3
0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5 10-4 10-3 10-2 10-1 1.0
20,000
1,000
500
100
50
10
0
350
300
250
200
150
100
50
0
C, CAPACITANCE (PF)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area
0 10 20 30 40 50 0 200 400 600 800 1000
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
20 35 50 60 80 95 110
FMAX, OPERATING FREQUENCY (kHz)
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ = 125°C
TC = 75°C
D = 50 %
VCE = XXXV
RG = 5
50
10
5
1
0.5
0.1
0.05
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
Pdiss - Pcond
Eon2 + Eoff
fmax2 =
Pdiss = TJ - TC
RθJC
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
Cies
Coes
Cres
0.0221
0.0498
0.158
0.0014
0.0416
0.543
Power
(watts)
Junction
temp (°C)
RC MODEL
Case temperature (°C)
7.xu1mvvx ‘ L m momnnsm Inov g7 mew Thklllsowsls mums ‘ Mt r y ‘ 9 5 427mm; x©®i m mum (NI mmv zywzou: £ wane
050-7458 Rev A 10-2005
APT75GP120JDQ3
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
TJ = 125°C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
td(on)
90%
10%
tr
5%
TJ = 125°C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
td(off)
10%
tf
90%
APT60DQ120
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
*DRIVER SAME TYPE AS D.U.T.
I
C
V
CLAMP
100uH
V
TEST
A
A
B
D.U.T.
DRIVER*
V
CE
Figure 24, EON1 Test Circuit
050-7458 Rev A 10-2005
APT75GP120JDQ3
TYPICAL PERFORMANCE CURVES
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 105°C, Duty Cycle = 0.5)
RMS Forward Current (Square wave, 50% duty)
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
Symbol
IF(AV)
IF(RMS)
IFSM
Symbol
VF
Characteristic / Test Conditions
IF = 75A
Forward Voltage IF = 150A
IF = 75A, TJ = 125°C
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Amps
UNIT
Volts
MIN TYP MAX
2.8
3.48
2.17
APT75GP120JDQ3
60
88
540
DYNAMIC CHARACTERISTICS
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MIN TYP MAX-
- 60
- 265
- 560
- 5 -
- 350
- 2890
- 13 -
- 150
- 4720 -
- 40
UNIT
ns
nC
Amps
ns
nC
Amps
ns
nC
Amps
Characteristic
Reverse Recovery Time
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Symbol
trr
trr
Qrr
IRRM
trr
Qrr
IRRM
trr
Qrr
IRRM
Test Conditions
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 25°C
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
ZθJC, THERMAL IMPEDANCE (°C/W)
10-5 10-4 10-3 10-2 10-1 1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
0.60
0.50
0.40
0.30
0.20
0.10
0
0.5
SINGLE PULSE
0.1
0.3
0.7
0.9
0.05
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
0.148
0.238
0.174
0.006
0.0910
0.524
Power
(watts)
Junction
temp. (°C)
RC MODEL
Case temperature. (°C)
>V V
050-7458 Rev A 10-2005
APT75GP120JDQ3
400
350
300
250
200
150
100
50
0
50
45
40
35
30
25
20
15
10
5
0
Duty cycle = 0.5
TJ = 175°C
100
90
80
70
60
50
40
30
20
10
0
TJ, JUNCTION TEMPERATURE (°C) Case Temperature (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature Figure 31. Maximum Average Forward Current vs. CaseTemperature
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
200
180
160
140
120
100
80
60
40
20
0
7000
6000
5000
4000
3000
2000
1000
0
Qrr, REVERSE RECOVERY CHARGE IF, FORWARD CURRENT
(nC) (A)
IRRM, REVERSE RECOVERY CURRENT trr, REVERSE RECOVERY TIME
(A) (ns)
TJ = 125°C
VR = 800V
TJ = 125°C
VR = 800V
TJ = 125°C
VR = 800V
TJ = 175°C
TJ = -55°C
TJ = 25°C
TJ = 125°C
0 1 2 3 4 0 200 400 600 800 1000 1200
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
30A
60A
120A
120A
30A
60A
trr
Qrr
Qrr
trr
IRRM
1.2
1.0
0.8
0.6
0.4
0.2
0.0
350
300
250
200
150
100
50
0
CJ, JUNCTION CAPACITANCE Kf, DYNAMIC PARAMETERS
(pF) (Normalized to 1000A/µs)
IF(AV) (A)
0 25 50 75 100 125 150 25 50 75 100 125 150 175
1 10 100 200
120A
60A
30A
VF, ANODE-TO-CATHODE VOLTAGE (V) -diF/dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Forward Current vs. Forward Voltage Figure 27. Reverse Recovery Time vs. Current Rate of Change
-diF/dt, CURRENT RATE OF CHANGE (A/µs) -diF/dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change Figure 29. Reverse Recovery Current vs. Current Rate of Change
050-7458 Rev A 10-2005
APT75GP120JDQ3
TYPICAL PERFORMANCE CURVES
4
3
1
2
5
5
Zero
1
2
3
4
diF/dt - Rate of Diode Current Change Through Zero Crossing.
IF - Forward Conduction Current
IRRM - Maximum Reverse Recovery Current.
trr - Reverse Recovery Time, measured from zero crossing where diode
Qrr - Area Under the Curve Defined by IRRM and trr.
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
Figure 33. Diode Test Circuit
Figure 34, Diode Reverse Recovery Waveform and Definitions
0.25 IRRM
PEARSON 2878
CURRENT
TRANSFORMER
diF/dt Adjust
30µH
D.U.T.
+18V
0V
Vr
trr/Qrr
Waveform
APT10035LLL
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
ISOTOP®
is a Registered Trademark of SGS Thomson.
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter/Anode Collector/Cathode
Gate
*
r = 4.0 (.157)
(2 places)
4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Emitter/Anode
Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
SOT-227 (ISOTOP®) Package Outline

Products related to this Datasheet

IGBT MOD 1200V 128A 543W ISOTOP