MIC5209 Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
‘ MIC§CHIP M |C5209 am; W Page
2017 Microchip Technology Inc. DS20005720A-page 1
MIC5209
Features
Output Voltage Range: 1.8V – 15V
Meets Intel® Slot 1 and Slot 2 Requirements
Guaranteed 500 mA Output Over the Full
Operating Temperature Range
Low 500 mV Maximum Dropout Voltage at Full
Load
Extremely Tight Load and Line Regulation
Thermally Efficient Surface-Mount Package
Low Temperature Coefficient
Current and Thermal Limiting
Reversed-Battery Protection
No-Load Stability
1% Output Accuracy
Ultra-Low-Noise Capability in SOIC-8 and DDPAK
Ultra-Small 3 mm × 3 mm DFN Package
Applications
Pentium II Slot 1 and Slot 2 Support Circuits
Laptop, Notebook, and Palmtop Computers
Cellular Telephones
Consumer and Personal Electronics
SMPS Post-Regulator and DC/DC Modules
High-Efficiency Linear Power Supplies
General Description
The MIC5209 is an efficient linear voltage regulator
with very low dropout voltage, typically 10 mV at light
loads and less than 500 mV at full load, with better than
1% output voltage accuracy.
Designed especially for hand-held, battery-powered
devices, the MIC5209 features low ground current to
help prolong battery life. An enable/shutdown pin on
the SOIC-8 and DDPAK versions can further improve
battery life with near-zero shutdown current.
Key features include reversed-battery protection,
current limiting, overtemperature shutdown,
ultra-low-noise capability (SOIC-8 and DDPAK
versions), and is available in thermally efficient
packaging. The MIC5209 is available in adjustable or
fixed output voltages.
Typical Application Circuits
3.3V NOMINAL INPUT SLOT 1
POWER SUPPLY
ULTRA-LOW NOISE
5V REGULATOR
MIC5209-2.5YS
VIN
3.0V
0.1μF
VOUT
2.5V ±1%
22μF
TANTALUM
123
MIC5209-5.0YM
VIN
6.0V
VOUT
5.0V
22μF
TANTALUM
1
2
3
45
6
7
8
ENABLE
SHUTDOWN
470pF
(OPTIONAL)
500 mA Low-Noise LDO Regulator
GND ma FIFIWFI |3||3||1||$| 5A.] 40 3G D 2|N 1EN GND |N2 7G OUTS 6C5 AJA 5G
MIC5209
DS20005720A-page 2 2017 Microchip Technology Inc.
Package Types
MIC5209-X.XYS
SOT-223 (S)
FIXED VOLTAGES (TOP VIEW)
MIC5209YML
8-PIN 3X3 DFN (ML)
ADJUSTABLE VOLTAGES (TOP VIEW)
1
IN
IN
O
UT
O
UT
8
EN
G
ND
NC
7
6
5
2
3
4
5
209
YWW
Y
PART
IDENTIFICATION
EP
I
N
OU
T
GN
D
1
3
2
TAB
G
N
D
MIC5209-X.XYM
SOIC-8 (M)
FIXED VOLTAGES (TOP VIEW)
1
2
3
4
8
7
6
5
GND
GND
GND
GND
EN
IN
OUT
BYP
MIC5209-X.XYU
DDPAK (U)
FIXED VOLTAGES (TOP VIEW)
5 BYP
4 OUT
3 GND
2IN
1EN
DNG
BAT
MIC5209YM
SOIC-8 (M)
ADJUSTABLE VOLTAGES (TOP VIEW)
MIC5209YU
DDPAK (U)
ADJUSTABLE VOLTAGES (TOP VIEW)
1
2
3
4
8
7
6
5
G
ND
G
ND
G
ND
G
ND
E
N
N
IN
OUT
OUT
J
A
D
J
5
A
D
J
4
O
UT
3
G
N
D
2
IN
1
EN
D
N
G
B
A
T
A
A
2017 Microchip Technology Inc. DS20005720A-page 3
MIC5209
Functional Diagrams
LOW-NOISE
FIXED REGULATOR
(SOT-223 VERSION ONLY)
ULTRA-LOW-NOISE
FIXED REGULATOR
VIN
IN
MIC5209-x.xYS
OUT VOUT
COUT
GND
~2.0V – 2.1V
–40ºC
BANDGAP
REFERENCE
EN
CURRENT-LIMIT
THERMAL SHUTDOWN
VIN
IN
MIC5209-x.xYM/U
OUT VOUT
COUT
GND
BANDGAP
REFERENCE
EN
CURRENT-LIMIT
THERMAL SHUTDOWN
CBYP
(OPTIONAL)
BYP
ULTRA-LOW-NOISE
ADJUSTABLE REGULATOR
VIN
IN
MIC5209YM/U (ADJUSTABLE)
OUT VOUT
COUT
GND
BANDGAP
REFERENCE
EN
CURRENT-LIMIT
THERMAL SHUTDOWN
CBYP
(OPTIONAL)
ADJ R1
R2
MIC5209
DS20005720A-page 4 2017 Microchip Technology Inc.
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Supply Voltage (VIN).................................................................................................................................... –20V to +20V
Power Dissipation (PD) (Note 1).............................................................................................................Internally Limited
ESD Rating (SOT-223)..................................................................................................................... 2 kV HBM/300V MM
ESD Rating (DFN, SOIC-8).............................................................................................................. 5 kV HBM/100V MM
Operating Ratings ‡
Supply Voltage (VIN)................................................................................................................................... +2.5V to +16V
Adjustable Output Voltage Range (VOUT) .................................................................................................. +1.8V to +15V
Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice: The device is not guaranteed to function outside its operating ratings.
Note 1: The maximum allowable power dissipation at any TA (ambient temperature) is PD(max) = (TJ(max) – TA) x θJA.
Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regula-
tor will go into thermal shutdown. See Table 4-1 and the Thermal Considerations sub-section in Applications
Information for details.
VDUT VOUT
2017 Microchip Technology Inc. DS20005720A-page 5
MIC5209
TABLE 1-1: ELECTRICAL CHARACTERISTICS (Note 1)
Electrical Characteristics: VIN = VOUT + 1V; IL = 100 μA; TJ = +25°C, bold values indicate –40°C TJ +125°C
except 0°C TJ +125°C for 1.8V VOUT 2.5V, unless noted.
Parameter Symbol Min. Typ. Max. Units Conditions
Output Voltage Accuracy VOUT
–1 — 1 % Variation from nominal VOUT
–2 2
Output Voltage
Temperature Coefficient
VOUT/
T40 —ppm/°CNote 2
Line Regulation VOUT/
VOUT
0.009 0.05 %V
IN = VOUT + 1V to 16V
——0.10
Load Regulation VOUT/
VOUT
0.05 0.5 %I
L = 100 µA to 500 mA, Note 3
——0.7
Dropout Voltage, (Note 4)VIN
VOUT
—1060
mV
IL = 100 µA
——80
115 175 IL = 50 mA
——250
—165300 IL = 150 mA
——400
—350500 IL = 500 mA
——600
Ground Pin Current
(Note 5, Note 6)IGND
—80130
µA
VEN 3.0V, IOUT = 100 µA
——170
—350650 VEN 3.0V, IOUT = 50 mA
——900
—1.82.5
mA
VEN 3.0V, IOUT = 150 mA
——3.0
—820 VEN 3.0V, IOUT = 500 mA
——25
Ground Pin Quiescent
Current, (Note 6)IGND
—0.05 3µA VEN 0.4V (shutdown)
—0.10 8VEN 0.18V (shutdown)
Ripple Rejection PSRR 75 dB f = 120 Hz
Current Limit ILIMIT
—700900 mA VOUT = 0V
——1000
Thermal Regulation VOUT/
PD
—0.05— %/WNote 7
Output Noise, (Note 8)e
n
—500—
nV Hz
VOUT = 2.5V, IOUT = 50 mA
COUT = 2.2 µF, CBYP = 0
—300— IOUT = 50 mA, COUT = 2.2 µF
CBYP = 470 pF
VDUT VOUT
MIC5209
DS20005720A-page 6 2017 Microchip Technology Inc.
Enable Input
Enable Input Logic-Low
Voltage VENL
——0.4 VV
EN = Logic-low (Regulator shutdown)
——0.18
2.0 —— VV
EN = Logic-high (Regulator enabled)
Enable Input Current IENL
—0.011 µA VENL 0.4V
0.01 –2 VENL 0.18V
—I
ENH
—520
µA
VENH 2.0V
——25
——30 VENH 16V
——50
Note 1: Specification for packaged product only.
2: Output voltage temperature coefficient is defined as the worst-case voltage change divided by the total
temperature range.
3: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are
tested for load regulation in the load range from 100 µA to 500 mA. Changes in output voltage due to heat-
ing effects are covered by the thermal regulation specification.
4: Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its
nominal value measured at 1V differential.
5: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current
drawn from the supply is the sum of the load current plus the ground pin current.
6: VEN is the voltage externally applied to devices with the EN (enable) input pin. SOIC-8 (M) and DDPAK (U)
packages only.
7: Thermal regulation is the change in output voltage at a time “t” after a change in power dissipation is
applied, excluding load or line regulation effects. Specifications are for a 500 mA load pulse at VIN = 16V
for t = 10 ms.
8: CBYP is an optional, external bypass capacitor connected to devices with a BYP (bypass) or ADJ (adjust)
pin. SOIC-8 (M) and DDPAK (U) packages only.
TABLE 1-1: ELECTRICAL CHARACTERISTICS (Note 1) (CONTINUED)
Electrical Characteristics: VIN = VOUT + 1V; IL = 100 μA; TJ = +25°C, bold values indicate –40°C TJ +125°C
except 0°C TJ +125°C for 1.8V VOUT 2.5V, unless noted.
Parameter Symbol Min. Typ. Max. Units Conditions
2017 Microchip Technology Inc. DS20005720A-page 7
MIC5209
TEMPERATURE SPECIFICATIONS (Note 1)
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Storage Temperature Range TS–65 +150 °C —
Lead Temperature +260 °C Soldering, 5 sec.
Junction Temperature TJ–40 +125 °C 2.5V VOUT 15V
Junction Temperature TJ0 +125 °C 1.8V VOUT < 2.5V
Package Thermal Resistance
Thermal Resistance SOT-223
θJA 62 °C/W EIA/JEDEC
JES51-751-7,
4 Layer Board
θJC —15 —°C/W
Thermal Resistance SOIC-8
θJA 50 °C/W See Thermal
Considerations for more
information.
θJC —25 —°C/W
Thermal Resistance DDPAK
θJA 31.4 °C/W EIA/JEDEC
JES51-751-7,
4 Layer Board
θJC —3 —°C/W
Thermal Resistance 3 mm x 3 mm
DFN
θJA 64 °C/W EIA/JEDEC
JES51-751-7,
4 Layer Board
θJC —12 —°C/W
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the
maximum allowable power dissipation will cause the device operating junction temperature to exceed the
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
100 . 10 100 1k 10K 100k 1M 10M FREQUENCY (Hz) FSRR (dB) c", = 0.01;»: 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 111111 A|||11 |I|1l|||1 I111I||11111II||111II|||11 PSRR (dB) 100 10 100 1k 10k 100k 1M 10M FREQUENCV (Hz) v ||1111II||111II||1111II|1111 | 1111 11111 1o 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FSRR (as) o 20 Vouv=5v 40 60 430 m. cm=o.o1ur ' 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 111II||1 11117 .30 I||I111II||111IIII11 I|||111I I 1111 «IIII111IIII11HIII1111 10 100 1k 10k IOOK1MIDM FREQUENCV (Hz)
MIC5209
DS20005720A-page 8 2017 Microchip Technology Inc.
2.0 TYPICAL PERFORMANCE CURVES
FIGURE 2-1: Power Supply Rejection
Ratio.
FIGURE 2-2: Power Supply Rejection
Ratio.
FIGURE 2-3: Power Supply Rejection
Ratio.
FIGURE 2-4: Power Supply Rejection
Ratio.
FIGURE 2-5: Power Supply Rejection
Ratio.
FIGURE 2-6: Power Supply Rejection
Ratio.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
1o 7 7 7 ‘3; 7 1 100 ~ 5 I 5 S 0.1 10m 5 lam=momA 3 1m on 9 am El 3 _ 3 com V-v'j‘o’uF z w. Cws‘uF ELECTROLYTIC * , 0000‘ 0 0,1 02 0‘3 04 o 100 1k 10k 100k 1M 10M VOLTAGE DROP M FREQUENCY (Hz) a 3 A a E 1 g % om. § 0001 ELECTROLYT‘ I o 0.1 02 0.3 04 °°°°1o 100 1k 10k 100k 1M 10M VOLTAGE DROP (V) FREQUENCY {Hz) 10 400 IW,=10mA,CM=IuF 9 1 E E .u 300 g 0.1 g 5 § 200 $ 0.01 9 0001 100 00001 °UY=5V 10 100 lk 10k 100k 1M 10M 00 100 200 3m 400 500 FREQUENCY (Hz) OUTPUT CURRENT (mA)
2017 Microchip Technology Inc. DS20005720A-page 9
MIC5209
FIGURE 2-7: Power Supply Ripple
Rejection vs. Voltage Drop.
FIGURE 2-8: Power Supply Ripple
Rejection vs. Voltage Drop.
FIGURE 2-9: Noise Performance.
FIGURE 2-10: Noise Performance.
FIGURE 2-11: Noise Performance.
FIGURE 2-12: Dropout Voltage vs. Output
Current.
GROUND CURRENT (MA) 10) 2W 300 400 500 OUTPUT CURRENT (mA) 4-5-» owool on GROUND OURREN1 (MA) IL: SDDmA D I 2 3 4 5 E 7 8 9 INPUT VOLTAGE (V) o Nu mo _~ mo .°.—' mo GROUND CURRENT (mA) o 0 2 4 6 8 INPUT VOLTAGE (V)
MIC5209
DS20005720A-page 10 2017 Microchip Technology Inc.
FIGURE 2-13: Ground Current vs. Output
Current.
FIGURE 2-14: Ground Current vs. Supply
Voltage.
FIGURE 2-15: Ground Current vs. Supply
Voltage.
2017 Microchip Technology Inc. DS20005720A-page 11
MIC5209
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1: PIN FUNCTION TABLE
Pin Number
8-Pin DFN
Pin Number
SOT-223
Pin Number
SOIC-8
Pin Number
DDPAK Pin Name Description
1, 2 1 2 2 IN Supply Input.
7 2, TAB 5, 6, 7, 8 3, TAB GND Ground: SOT-223 Pin 2 and TAB are
internally connected. SOIC-8 Pins 5
through 8 are internally connected.
3, 4 3 3 4 OUT Regulator Output: Pins 3 and 4 must
be tied together.
5 NC Not Connected.
8 1 1 EN Enable (Input): CMOS-compatible
control input. Logic-High = Enable;
Logic-Low = Shutdown.
4 (Fixed) 5 (Fixed) BYP Reference Bypass: Connect external
470 pF capacitor to GND to reduce
output noise. Can be left open. For
1.8V or 2.5V operation, see Application
Information.
6 4 (Adjustable) 5 (Adjustable) ADJ Adjust (Input): Feedback input.
Connect to resistive voltage-divider
network.
EP ePad Exposed Thermal Pad: Connect to
GND for best thermal performance.
Mu‘li‘ayer boards with a ground plane‘ wide waves near
MIC5209
DS20005720A-page 12 2017 Microchip Technology Inc.
4.0 APPLICATIONS INFORMATION
4.1 Enable/Shutdown
Enable is not available on devices in the SOT-223 (S)
package.
Forcing EN (enable/shutdown) high (> 2V) enables the
regulator. EN is compatible with CMOS logic. If the
enable/shutdown feature is not required, connect EN to
IN (supply input).
4.2 Input Capacitor
A 1 µF capacitor should be placed from IN to GND if
there is more than 10 inches of wire between the input
and the AC filter capacitor or if a battery is used as the
input.
4.3 Output Capacitor
An output capacitor is required between OUT and GND
to prevent oscillation. The minimum size of the output
capacitor is dependent upon whether a reference
bypass capacitor is used. 1 µF minimum is
recommended when CBYP is not used (see Figure 4-1).
2.2 µF minimum is recommended when CBYP is 470 pF
(see Figure 4-2). Larger values improve the regulator’s
transient response.
The output capacitor should have an ESR (equivalent
series resistance) of about 1 and a resonant
frequency above 1 MHz. Ultra-low-ESR and ceramic
capacitors can cause a low amplitude oscillation on the
output and/or underdamped transient response. Most
tantalum or aluminum electrolytic capacitors are
adequate; film types will work, but are more expensive.
Since many aluminum electrolytics have electrolytes
that freeze at about –30°C, solid tantalums are
recommended for operation below –25°C.
At lower values of output current, less output
capacitance is needed for output stability. The
capacitor can be reduced to 0.47 µF for current below
10 mA or 0.33 µF for currents below 1 mA.
4.4 No-Load Stability
The MIC5209 will remain stable and in regulation with
no load (other than the internal voltage divider) unlike
many other voltage regulators. This is especially
important in CMOSRAM keep-alive applications.
4.5 Reference Bypass Capacitor
Reference bypass (BYP) is available only on devices in
SOIC-8 and DDPAK packages.
BYP is connected to the internal voltage reference. A
470 pF capacitor (CBYP) connected from BYP to GND
quiets this reference, providing a significant reduction
in output noise (ultra-low-noise performance). Because
CBYP reduces the phase margin, the output capacitor
should be increased to at least 2.2 µF to maintain
stability.
The start-up speed of the MIC5209 is inversely
proportional to the size of the reference bypass
capacitor. Applications requiring a slow ramp-up of
output voltage should consider larger values of CBYP
.
Likewise, if rapid turn-on is necessary, consider
omitting CBYP
.
If output noise is not a major concern, omit CBYP and
leave BYP open.
4.6 Thermal Considerations
The SOT-223 has a ground tab that allows it to
dissipate more power than the SOIC-8 (refer to the
Slot-1 Power Supply sub-section for details). At +25°C
ambient, it will operate reliably at 1.6W dissipation with
“worst-case” mounting (no ground plane, minimum
trace widths, and FR4 printed circuit board).
Thermal resistance values for the SOIC-8 represent
typical mounting on a 1”-square, copper-clad, FR4
circuit board. For greater power dissipation, SOIC-8
versions of the MIC5209 feature a fused internal lead
frame and die bonding arrangement that reduces
thermal resistance when compared to standard SOIC-8
packages.
Multilayer boards with a ground plane, wide traces near
the pads, and large supply-bus lines will have better
thermal conductivity and will also allow additional
power dissipation.
For additional heat sink characteristics, refer to
Application Hint 17. For a full discussion of heat sinking
and thermal effects on voltage regulators, refer to the
“Regulator Thermals” section of the Designing with
Low-Dropout Voltage Regulators handbook.
4.7 Low-Voltage Operation
The MIC5209-1.8 and MIC5209-2.5 require special
consideration when used in voltage-sensitive systems.
They may momentarily overshoot their nominal output
voltages unless appropriate output and bypass
capacitor values are chosen.
During regulator power up, the pass transistor is fully
saturated for a short time, while the error amplifier and
voltage reference are being powered up more slowly
from the output (see Functional Diagrams). Selecting
TABLE 4-1: MIC5209 THERMAL
RESISTANCE
Package θJA θJC
SOT-223 (S) 62°C/W 15°C/W
SOIC-8 (M) 50°C/W 25°C/W
DDPAK (U) 31.4°C/W 3°C/W
3x3 DFN (ML) 64°C/W 12°C/W
FE
2017 Microchip Technology Inc. DS20005720A-page 13
MIC5209
larger output and bypass capacitors allows additional
time for the error amplifier and reference to turn on and
prevent overshoot.
To ensure that no overshoot is present when starting up
into a light load (100 µA), use a 4.7 µF output
capacitance and 470 pF bypass capacitance. This
slows the turn-on enough to allow the regulator to react
and keep the output voltage from exceeding its nominal
value. At heavier loads, use a 10 µF output
capacitance and 470 pF bypass capacitance. Lower
values of output and bypass capacitance can be used,
depending on the sensitivity of the system.
Applications that can withstand some overshoot on the
output of the regulator can reduce the output capacitor
and/or reduce or eliminate the bypass capacitor.
Applications that are not sensitive to overshoot due to
power-on reset delays can use normal output and
bypass capacitor configurations.
Please note the junction temperature range of the
regulator with an output less than 2.5V (fixed and
adjustable) is 0°C to +125°C.
4.8 Fixed Regulator Applications
Figure 4-1 shows a basic MIC5209-x.xYM (SOIC-8)
fixed-voltage regulator circuit. See Figure 5 for a similar
configuration using the more thermally-efficient
MIC5209-x.xYS (SOT-223). A 1 µF minimum output
capacitor is required for basic fixed-voltage
applications.
FIGURE 4-1: Low-Noise Fixed-Voltage
Application.
Figure 4-2 includes the optional 470 pF noise bypass
capacitor between BYP and GND to reduce output
noise. Note that the minimum value of COUT must be
increased when the bypass capacitor is used.
FIGURE 4-2: Ultra-Low-Noise
Fixed-Voltage Application.
4.9 Adjustable Regulator Applications
The MIC5209YM, MIC5209YU, and MIC5209YML can
be adjusted to a specific output voltage by using two
external resistors (Figure 4-3). The resistors set the
output voltage based on the equation:
EQUATION 4-1:
This equation is correct due to the configuration of the
bandgap reference. The bandgap voltage is relative to
the output, as seen in the Functional Diagrams.
Traditional regulators normally have the reference
voltage relative to ground; therefore, their equations
are different from the equation for the MIC5209Y.
Although ADJ is a high-impedance input and, for best
performance, R2 should not exceed 470 k.
FIGURE 4-3: Low-Noise
Adjustable-Voltage Application.
Figure 4-4 includes the optional 470 pF bypass
capacitor from ADJ to GND to reduce output noise.
FIGURE 4-4: Ultra-Low-Noise Adjustable
Application.
4.10 Slot-1 Power Supply
Intel’s Pentium II processors have a requirement for a
2.5V ±5% power supply for a clock synthesizer and its
associated loads. The current requirement for the 2.5V
supply is dependent upon the clock synthesizer used,
MIC5209-x.xYM
VIN
1
23
4
5 - 8
IN
EN
OUT
BYP
GND
VOUT
1μF
MIC5209-x.xYM
VIN
1
23
4
5 - 8
IN
EN
OUT
BYP
GND
VOUT
2.2μF
470pF
VOUT 1.242V1R2
R1
-------+


=
MIC5209YM
VIN
1
23
4
5 - 8
IN
EN
OUT
ADJ
GND
VOUT
1μF
R1
R2
MIC5209YM
VIN
1
23
4
5 - 8
IN
EN
OUT
ADJ
GND
VOUT
2.2μF
R1
R2
470pF
MIC5209
DS20005720A-page 14 2017 Microchip Technology Inc.
the number of clock outputs, and the type of level
shifter (from core logic levels to 2.5V levels). Intel
estimates a “worst-case” load of 320 mA.
The MIC5209 was designed to provide the 2.5V power
requirement for Slot-1 applications. Its guaranteed
performance of 2.5V ±3% at 500 mA allows adequate
margin for all systems, and the dropout voltage of
500 mV means that it operates from a “worst-case”
3.3V supply where the voltage can be as low as 3.0V.
FIGURE 4-5: Slot-1 Power Supply.
A Slot-1 power supply (Figure 4-5) is easy to
implement. Only two capacitors are necessary, and
their values are not critical. CIN bypasses the internal
circuitry and should be at least 0.1 µF. COUT provides
output filtering, improves transient response, and
compensates the internal regulator control loop. Its
value should be at least 22 µF. CIN and COUT can be
increased as much as desired.
4.10.1 SLOT-1 POWER SUPPLY POWER
DISSIPATION
Powered from a 3.3V supply, the Slot-1 power supply
illustrated in Figure 4-5 has a nominal efficiency of
75%. At the maximum anticipated Slot-1 load
(320 mA), the nominal power dissipation is only
256 mW.
The SOT-223 package has sufficient thermal
characteristics for wide design margins when mounted
on a single-layer copper-clad printed circuit board. The
power dissipation of the MIC5209 is calculated using
the voltage drop across the device output current plus
supply voltage ground current.
Considering “worst-case” tolerances, the power
dissipation could be as high as:
EQUATION 4-2:
So:
EQUATION 4-3:
Resulting in:
EQUATION 4-4:
Using the maximum junction temperature of +125°C
and a θJC of 15°C/W for the SOT-223, 25°C/W for the
SOIC-8, or 3°C/W for the DDPAK package, the
following worst-case heat-sink thermal resistance (θSA)
requirements are:
EQUATION 4-5:
Table 4-2 and Figure 4-6 show that the Slot-1 power
supply application can be implemented with a minimum
footprint layout.
Figure 4-6 shows the necessary copper pad area to
obtain specific heatsink thermal resistance (θSA)
values. The θSA values highlighted in Ta b l e 4 - 2 require
much less than 500 mm2 of copper and, per Figure 4-6,
can be easily accomplished with the minimum footprint.
MIC5209-x.xYS
VIN
13
2, TAB
IN OUT
GND
VOUT
CIN
0.1μF
COUT
22μF
VIN MAX
VOUT MAX
IOUT
VIN MAX
+IGND
TABLE 4-2: MAXIMUM ALLOWABLE
THERMAL RESISTANCE
TA+40°C +50°C +60°C +70°C
θJA Limit 209°C/W 184°C/W 160°C/W 135°C/W
θSA
SOT-223
194°C/W 169°C/W 145°C/W 120°C/W
θSA
SOIC-8
184°C/W 159°C/W 135°C/W 110°C/W
θSA
DDPAK
206°C/W 181°C/W 157°C/W 132°C/W
3.6V2.375V320mA3.6V4mA+
PD407mW=
JA
TJMAX
TA
PD
--------------------------------=
Where: θSA = θJA - θJC
2017 Microchip Technology Inc. DS20005720A-page 15
MIC5209
FIGURE 4-6: PCB Heatsink Thermal
Resistance.
THERMAL RESISTANCE (ºC/W)
COPPER HEAT SINK AREA (mm2)
70
60
50
40
30
20
10
0
0 2000 4000 6000
MIC5209
DS20005720A-page 16 2017 Microchip Technology Inc.
5.0 PACKAGING INFORMATION
5.1 Package Marking Information
5-Pin SOT-223* Example
SOIC-8 (Fixed)*
XXXX
XXXXYWWP
Example
5209
25YS722P
XXXX
-X.XXX
WNNN
5209
-3.3YM
9651
SOIC-8 (Adj.)* Example
XXX
XXXXXX
WNNN
MIC
5209YM
1312
5-Pin DDPAK (Fixed)* Example
8-Pin DFN* Example
X
XXXX
NNN
XXXX
-X.XXX
WNNNP
5209
-3.3YU
5492P
5-Pin DDPAK (Adj)* Example
XXX
XXXXXX
WNNNP
MIC
5209YU
1975P
Y
5209
916
Pbrfree JEDEC designamr( }
2017 Microchip Technology Inc. DS20005720A-page 17
MIC5209
Legend: XX...X Product code or customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
, , Pin one index is identified by a dot, delta up, or delta down (triangle
mark).
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information. Package may or may not include
the corporate logo.
Underbar (_) and/or Overbar () symbol may not be to scale.
3
e
3
e
TITLE 3 LEAD SOT223 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN DRAWING # | SOTQZiiSLDiPL’l UNIT | MN 650102 400:0‘05 BIO—i010 7‘0010‘3 1501005 8 00:0 05 \ \ \ \ I: I: I: 7 + 10 <3 mes)="" m="" bi="" 43e="" 1="" 350:0="" 20="" e="" m="C2" teip="" view="" 3="" e?="" e="" n="" 1001005="" w="" ”7,="" 3'="" g="" e="" d="" receimmended="" a="" g="" 7="" e="" .="" .="" a="" i="" e="" view="" land="" pattern="" g="" 13="" 13="" 3="" 75‘="" mm.="" side="" view="" note:="" 1="" dimennons="" and="" tolerance:="" are="" u="" per="" ansi="" mm.="" 1052="" detailed="" view="" 2="" controllmg="" dlmemnon="" miumems.="" 3="" dzmznsmns="" are="" exchmve="" or="" mold="" flash="" and="" gate="" bun-="" 4="" all="" specxfxcabon="" comply="" w="" jedec="" spec="" t0261="" issue="" c.="">
MIC5209
DS20005720A-page 18 2017 Microchip Technology Inc.
3-Lead SOT-223 Package Outline and Recommended Land Pattern
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
2017 Microchip Technology Inc. DS20005720A-page 19
MIC5209
5-Lead DDPAK Package Outline and Recommended Land Pattern
/HDG3ODVWLF(7>''3$.@
1RWHV
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV ,1&+(6
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
2YHUDOO+HLJKW $  ± 
6WDQGRII $  ± 
2YHUDOO:LGWK (  ± 
([SRVHG3DG:LGWK (  ± ±
0ROGHG3DFNDJH/HQJWK '  ± 
2YHUDOO/HQJWK +  ± 
([SRVHG3DG/HQJWK '  ± ±
/HDG7KLFNQHVV F  ± 
3DG7KLFNQHVV &  ± 
/HDG:LGWK E  ± 
)RRW/HQJWK /  ± 
3DG/HQJWK / ± ± 
)RRW$QJOH  ± 
E
L1
D
D1
H
N
1
be
TOP VIEW
BOTTOM VIEW
A
A1 cL
C2
CHAMFER
OPTIONAL
E1
φ
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
stead Plastic (ET) [DDPAK] v2 / sttK SCREEN cw 7 7 H U H H H w RECOMMENDED LAND PATTERN Um; \NCHES Dnnensmn Lnnus MN | NOM \ MAX Cuntam Pttcn E 057 asc Dmmnal center Pad wmtn x2 423 Opmnal Center Pad Lengtn v2 327 Cumacl Pad Spacmg c1 243 Contact Pad Wmtn 1x5) xt um Contact Fad Length 1x5) v1 159 No|es 1 Dtmenstomng and totemnmng perASME v14 SM 850 Best: Dtmenstun Theureucally exact vatue snuwn wunuut lulerances Micmcntp Technmogy Dlawmg Nu comma
MIC5209
DS20005720A-page 20 2017 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
TITLE 9 LEAD DEN 3x3mm PACKAGE OUTLINE & RECOMMENDED LAND PATTERN DRAWING it | L‘FN33i8LDiPL’1 | UNIT MM Fm 4n Marking D 40:0 [ISO ‘ PIN )M TD ’ R0 20 TYP L D A a g 3 E C 300 as g a A 3 a C m {\J m, 0 D C 8 m T-iann BSEg—I m D g 4— ISSAUOSU ‘7 g 3 q Q IDP VIEW BmmM VIEW mm, 2 3 mm 2 :! I oasxnnsl [ w u uuuiu osuu a gun ReF ] SIDE VIEW we I 2, z NEITE‘ L MAX PACKAGE WARFAGE I: UUS MM 2 MAX ALLEIWABLE BURR IS 0‘076MM IN ALL DIRECTIDNS 3 PIN #1 IS IIIN TIIIP WILL BE LASER MARKED 4 RED CIRCLE IN LAND PATTERN INDICATE THERMAL VIA SIZE SHDULD BE 0307035 MM IN DIAMETER AND SHEIULD BE CDNNEDTED TIII END EIIIR MAX THERMAL PEREDRMANCE 5‘ GREEN RECTANGLES (SHADED AREA) INDICATE SDLDER STENCIL EIF'ENING IIIN EXPDSEU PAD AREA SIZE SHDULD BE OISDXUTSD MM IN SIZE; 0‘20 MM SPACING‘
2017 Microchip Technology Inc. DS20005720A-page 21
MIC5209
8-Lead 3 mm x 3 mm DFN Package Outline and Recommended Land Pattern
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
PODALand Panem drawmg #D FN3 3 — 8 LD— PL— 1 RECDMMENDED LAND PATTERN 8‘40t0‘05 0‘28t0‘02 m T w m m] STACKEDEUP 04844108 g 1‘56i0‘02 + ITSUiOTOE g r—‘% E 0 mo E 0‘ E g W E ‘ E77 g flg @ E O O E77 d w: m L) 378 BSC V‘ m Ln \D :5 EXPDSED METAL TRACE 12 T SDLDER STENCIL DPENING
MIC5209
DS20005720A-page 22 2017 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
TITLE El LEAD SOICN PACKAGE OUTLINE & RECOMMENDED LAND PATTERN DRAWING if | SOICN’SLD’EL’l UNIT INCH [MM] : E_EL flfij . mm /\( mmmm azasinnns ‘ [59921721] (J J J W . nmsgwaLJL J L U134 13% [‘93 $335] [041 $5] D‘DSDELEU as: TEIP VIEW w n ass 18%? [n 64 122% II c f .1 En‘nmmauj VJ 5 2 nalfl 1““ x‘S' :EE [m :33?) DETAIL ’A' 7 mum ® 115me 'A‘ W (15333;; *1 '. i [55a 53??) unnsimlfi n 155 3 mg [man :33? 1 m 9.35] W A emuw [0701ng L J L 027 am DIMENSIEINS ARE IN INCHESEHHL CEINTREILLING DIMENSIEIN INCHES DIMENSIEIN nnEs NEIT [NELUDE MEILD FLASH EIR PREITRUSIEINS EITHER EIF WHICH SHALL NUT EXCEED mamas] ' R “M N m smE unnofflm ms 33:]
2017 Microchip Technology Inc. DS20005720A-page 23
MIC5209
8-Lead SOIC Package Outline and Recommended Land Pattern
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
MIC5209
DS20005720A-page 24 2017 Microchip Technology Inc.
NOTES:
2017 Microchip Technology Inc. DS20005720A-page 25
MIC5209
APPENDIX A: REVISION HISTORY
Revision A (February 2017)
Converted Micrel document MIC5209 to Micro-
chip data sheet DS20005720A.
Minor text changes throughout.
Updated TO-263-5 packaging spec to DDPAK.
Updated Thermal Resistance values to be current
with Microchip packaging.
MIC5209
DS20005720A-page 26 2017 Microchip Technology Inc.
NOTES:
PART NO. v X.X T 41x 41x 4K
2017 Microchip Technology Inc. DS20005720A-page 27
MIC5209
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.
Examples:
a) MIC5209-1.8YM-TR: 500 mA Low-Noise LDO
Regulator, 1.8V Voltage,
–40°C to +125°C Temp. Range,
8-Lead SOIC, 2,500/Reel
b) MIC5209-1.8YM: 500 mA Low-Noise LDO
Regulator, 1.8V Voltage,
–40°C to +125°C Temp. Range,
8-Lead SOIC, 95/Tube
c) MIC5209-2.5YU-TR: 500 mA Low-Noise LDO
Regulator, 2.5V Voltage,
–40°C to +125°C Temp. Range,
5-Lead DDPAK, 750/Reel
d) MIC5209-2.5YU: 500 mA Low-Noise LDO
Regulator, 2.5V Voltage,
–40°C to +125°C Temp. Range,
5-Lead DDPAK, 50/Tube
e) MIC5209-3.0YS-TR: 500 mA Low-Noise LDO
Regulator, 3.0V Voltage,
–40°C to +125°C Temp. Range,
3-Lead SOT-223, 2,500/Reel
f) MIC5209-3.0YS: 500 mA Low-Noise LDO
Regulator, 3.0V Voltage,
–40°C to +125°C Temp. Range,
3-Lead SOT-223, 78/Tube
g) MIC5209YML-TR: 500 mA Low-Noise LDO
Regulator, Adj. Voltage,
–40°C to +125°C Temp. Range,
8-Lead DFN, 5,000/Reel
h) MIC5209YML-T5: 500 mA Low-Noise LDO
Regulator, Adj. Voltage,
–40°C to +125°C Temp. Range,
8-Lead DFN, 500/Reel
PART NO. X
Package
Device
Device: MIC5209: 500 mA Low Noise LDO Regulator
Voltage: (blank) = Adjustable
1.8 = 1.8V
2.5 = 2.5V
3.0 = 3.0V
3.3 = 3.3V
3.6 = 3.6V
4.2 = 4.2V
5.0 = 5.0V
Temperature: Y = –40°C to +125°C
Package: M = 8-Lead SOIC
ML = 8-Lead DFN
S = 3-Lead SOT-223
U = 5-Lead DDPAK
Media Type: TR = 2,500/Reel (SOIC, SOT-223)
TR = 750/Reel (DDPAK)
TR = 5,000/Reel (DFN)
T5 = 500/Reel (DFN)
(blank)= 50/Tube (DDPAK)
(blank)= 78/Tube (SOT-223)
(blank)= 95/Tube (SOIC)
X
Temperature
XX
Media Type
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This identifier is
used for ordering purposes and is not printed on
the device package. Check with your Microchip
Sales Office for package availability with the
Tape and Reel option.
X.X
Voltage
MIC5209
DS20005720A-page 28 2017 Microchip Technology Inc.
NOTES:
YSTEM
2017 Microchip Technology Inc. DS20005720A-page 29
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.
ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2017, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-1417-9
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITYMANAGEMENTS
YSTEM
CERTIFIEDBYDNV
== ISO/TS16949==
6‘ ‘MICRDCHIP AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
DS20005720A-page 30 2017 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
11/07/16

Products related to this Datasheet

IC REG LINEAR 3.3V 500MA SOT223
IC REG LINEAR 2.5V 500MA 8SOIC
IC REG LINEAR 3.3V 500MA SOT223
IC REG LINEAR 3.3V 500MA 8SOIC
IC REG LIN POS ADJ 500MA 8SOIC
IC REG LINEAR 5V 500MA 8SOIC
IC REG LINEAR 4.2V 500MA SOT223
IC REG LINEAR 1.8V 500MA 8SOIC
IC REG LINEAR 3.3V 500MA SOT223
IC REG LINEAR 2.5V 500MA SOT223
IC REG LIN POS ADJ 500MA 8SOIC
IC REG LINEAR 3.3V 500MA 8SOIC
IC REG LIN POS ADJ 500MA TO263-5
IC REG LINEAR 3.3V 500MA 8SOIC
IC REG LINEAR 3.3V 500MA TO263-5
IC REG LINEAR 5V 500MA SOT223
IC REG LINEAR 2.5V 500MA 8SOIC
IC REG LINEAR POS ADJ 500MA 8DFN
IC REG LIN POS ADJ 500MA TO263-5
IC REG LINEAR 3.6V 500MA TO263-5
IC REG LINEAR 5V 500MA 8SOIC
IC REG LINEAR 5V 500MA TO263-5
IC REG LINEAR 1.8V 500MA 8SOIC
IC REG LINEAR 3.6V 500MA 8SOIC
IC REG LINEAR 3.6V 500MA SOT223
IC REG LINEAR 3V 500MA SOT223
IC REG LINEAR 5V 500MA TO263-5
IC REG LINEAR POS ADJ 500MA 8DFN
IC REG LINEAR 5V 500MA SOT223
IC REG LINEAR 4.2V 500MA SOT223