LT1213, LT1214 Datasheet by Analog Devices Inc.

View All Related Products | Download PDF Datasheet
l ’ I t "p LT1213/LT1214 TECHNOLOGY 47 L7LJIJWW
1
LT1213/LT1214
APPLICATIO S
U
FEATURES
DESCRIPTIO
U
TYPICAL APPLICATIO
U
28MHz, 12V/µs, Single Supply
Dual and Quad
Precision Op Amps
The LT
®
1213 is a dual, single supply precision op amp with
a 28MHz gain-bandwidth product and a 12V/µs slew rate.
The LT1214 is a quad version of the same amplifier. The
DC precision of the LT1213/LT1214 eliminates trims in
most systems while providing high frequency perfor-
mance not usually found in single supply amplifiers.
The LT1213/LT1214 will operate on any supply greater
than 2.5V and less than 36V total. These amplifiers are
specified at single 3.3V, single 5V and ±15V supplies, and
only require 2.7mA of quiescent supply current per ampli-
fier. The inputs can be driven beyond the supplies without
damage or phase reversal of the output. The minimum
output drive is 30mA, ideal for driving low impedance
loads.
2.5V Full-Scale 12-Bit Systems: V
OS
0.45LSB
10V Full-Scale 16-Bit Systems: V
OS
1.8LSB
Active Filters
Photodiode Amplifiers
DAC Current-to-Voltage Amplifiers
Battery-Powered Systems
Frequency Response
FREQUENCY (Hz)
10k
GAIN (dB)
100k 1M 10M
1213/14 TA02
10
0
–10
–20
–30
–40
–50
–60
Single Supply 3-Pole 1MHz Butterworth Filter
Note: For applications requiring higher slew rate, see the LT1215/LT1216
data sheet. For lower power and lower slew rate, see the LT1211/LT1212 data
sheet.
+
V
IN
V
+
1/2
LT1213 V
OUT
1213/14 TA01
R1
680
4.12k
C2
200pF
R2
680
R3
680
C3
390pF
4.12k
5pF
C1
150pF
A
V
= 2
MAXIMUM OUTPUT OFFSET = 714µV
0.1µF
, LTC and LT are registered trademarks of Linear Technology Corporation.
Slew Rate: 12V/µs Typ
Gain-Bandwidth Product: 28MHz Typ
Fast Settling to 0.01%
2V Step to 200µV: 500ns Typ
10V Step to 1mV: 1.1µs Typ
Excellent DC Precision in All Packages
Input Offset Voltage: 275µV Max
Input Offset Voltage Drift: 6µV/°C Max
Input Offset Current: 40nA Max
Input Bias Current: 200nA Max
Open-Loop Gain: 1200V/mV Min
Single Supply Operation
Input Voltage Range Includes Ground
Output Swings to Ground While Sinking Current
Low Input Noise Voltage: 10nV/Hz Typ
Low Input Noise Current: 0.2pA/Hz Typ
Specified at 3.3V, 5V and ±15V
Large Output Drive Current: 30mA Min
Low Supply Current per Amplifier: 3.5mA Max
Dual in 8-Pin DIP and SO-8
Quad in 14-Pin DIP and NARROW SO-16
j j j j j j j j j j j j 9% >
2
LT1213/LT1214
J8 PACKAGE
8-LEAD CERAMIC DIP
N8 PACKAGE
8-LEAD PLASTIC DIP
1
2
3
4
8
7
6
5
TOP VIEW
OUT A
IN A
+IN A
V
V+
OUT B
IN B
+IN B
B
A
A
U
G
W
A
W
U
W
ARBSOLUTEXI T
IS
Total Supply Voltage (V
+
to V
) ............................. 36V
Input Current ..................................................... ±15mA
Output Short-Circuit Duration (Note 2)........ Continuous
Operating Temperature Range
LT1213C/LT1214C ............................ 40°C to 85°C
LT1213M (OBSOLETE) ............... –55°C to 125°C
Storage Temperature Range ................ 65°C to 150°C
Junction Temperature (Note 3)
Plastic Package (N8, S8, N, S) ........................ 150°C
Ceramic Package (J8) (OBSOLETE)................. 175°C
Lead Temperature (Soldering, 10 sec)................. 300°C
WU
U
PACKAGE/ORDER I FOR ATIO
ORDER PART
NUMBER
TJMAX = 150°C, θJA = 100°C/W (N)
S8 PART MARKING
1213
ORDER PART
NUMBER
ORDER PART
NUMBER
ORDER PART
NUMBER
TJMAX = 150°C, θJA = 150°C/W
TJMAX = 150°C, θJA = 100°C/W
TJMAX = 150°C, θJA = 70°C/W
PACKAGE
NUMBER OF MAX TC V
OS
CERAMIC DIP PLASTIC DIP SURFACE MOUNT
OP AMPS T
A
RANGE MAX V
OS
(25°C) (V
OS
/T) (J) (N) (S)
Two (Dual) 40°C to 85°C 150µV 1.5µV/°C LT1213ACN8
275µV3µV/°C LT1213CN8
275µV6µV/°C LT1213CS8
Two (Dual) 55°C to 125°C 150µV 1.5µV/°C LT1213AMJ8
275µV3µV/°C LT1213MJ8
Four (Quad) 40°C to 85°C 275µV6µV/°C LT1214CN LT1214CS
AVAILABLE OPTIO S
U
N PACKAGE
14-LEAD PLASTIC DIP
OUT A
–IN A
+IN A
V+
+IN B
–IN B
OUT B
OUT D
–IN D
+IN D
V
+IN C
–IN C
OUT C
1
2
3
4
5
6
7
14
13
12
11
10
9
8
D
A
C
B
TOP VIEW
1
2
3
4
8
7
6
5
TOP VIEW
S8 PACKAGE
8-LEAD PLASTIC SOIC
B
A
OUT A
IN A
+IN A
V
V+
OUT B
IN B
+IN B
TOP VIEW
S PACKAGE
16-LEAD PLASTIC SOIC
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
OUT A
–IN A
+IN A
V
+
+IN B
IN B
OUT B
NC
OUT D
IN D
+IN D
V
+IN C
IN C
OUT C
NC
A
C
B
D
LT1214CN
LT1213CS8
LT1214CS
(Note 1)
TJMAX = 175°C, θJA = 100°C/W (J)
OBSOLETE PACKAGE
Consult LTC Marketing for parts specified with wider operating temperature ranges.
LT1213CN8
LT1213ACN8
LT1213MJ8
LT1213AMJ8
Consider S8 or N8 Packages for Alternate Source
L7LJIJWW
3
LT1213/LT1214
5V
ELECTRICAL C CHARA TERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted.
LT1213AC LT1213C/LT1213M
LT1213AM LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 75 150 100 275 µV
V
OS
Long-Term Input Offset 0.5 0.6 µV/Mo
Time Voltage Stability
I
OS
Input Offset Current 5 30 5 40 nA
I
B
Input Bias Current 80 160 100 200 nA
Input Noise Voltage 0.1Hz to 10Hz 200 200 nV
P-P
e
n
Input Noise Voltage Density f
O
= 10Hz 10 10 nV/Hz
f
O
= 1000Hz 10 10 nV/Hz
i
n
Input Noise Current Density f
O
= 10Hz 0.9 0.9 pA/Hz
f
O
= 1000Hz 0.2 0.2 pA/Hz
Input Resistance (Note 4) Differential Mode 10 40 10 40 M
Common Mode 200 200 M
Input Capacitance f = 1MHz 10 10 pF
Input Voltage Range 3.5 3.8 3.5 3.8 V
0 –0.3 0 –0.3 V
CMRR Common Mode Rejection Ratio V
CM
= 0V to 3.5V 90 105 86 105 dB
PSRR Power Supply Rejection Ratio V
S
= 2.5V to 12.5V 93 116 90 116 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500250 850 250 850 V/mV
Maximum Output Voltage Swing Output High, No Load 4.30 4.39 4.30 4.39 V
(Note 5) Output High, I
SOURCE
= 1mA 4.20 4.30 4.20 4.30 V
Output High, I
SOURCE
= 20mA 3.80 3.92 3.80 3.92 V
Output Low, No Load 0.004 0.007 0.004 0.007 V
Output Low, I
SINK
= 1mA 0.033 0.050 0.033 0.050 V
Output Low, I
SINK
= 20mA 0.475 0.620 0.475 0.620 V
I
O
Maximum Output Current (Note 10) ±30 ±50 ±30 ±50 mA
SR Slew Rate A
V
= –2 8.5 8.5 V/µs
GBW Gain-Bandwidth Product f = 100kHz 26 26 MHz
I
S
Supply Current per Amplifier 2.0 2.7 3.8 2.0 2.7 3.8 mA
Minimum Supply Voltage Single Supply, V
CM
= 0V 2.2 2.5 2.2 2.5 V
Full Power Bandwidth A
V
= 1, V
O
= 2.5V
P-P
1.0 1.0 MHz
t
r
, t
f
Rise Time, Fall Time A
V
= 1, 10% to 90%, V
O
= 100mV 24 24 ns
OS Overshoot A
V
= 1, V
O
= 100mV 30 30 %
t
PD
Propagation Delay A
V
= 1, V
O
= 100mV 17 17 ns
t
S
Settling Time 0.01%, A
V
= 1, V
O
= 2V 500 500 ns
Open-Loop Output Resistance I
O
= 0mA, f = 10MHz 50 50
THD Total Harmonic Distortion A
V
= 1, V
O
= 1V
RMS
, 20Hz to 20kHz 0.001 0.001 %
L7LJIJ§§P
4
LT1213/LT1214
5V
ELECTRICAL C CHARA TERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C TA 70°C, unless otherwise noted.
LT1213AC LT1213C/LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 100 175 150 375 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 µV/°C
T(Note 4) 14-Pin DIP, SOIC Package 2 6 µV/°C
I
OS
Input Offset Current 10 45 10 55 nA
I
B
Input Bias Current 90 190 110 230 nA
Input Voltage Range 3.4 3.5 3.4 3.5 V
0.1 –0.1 0.1 –0.1 V
CMRR Common Mode Rejection Ratio V
CM
= 0.1V to 3.4V 89 105 85 105 dB
PSRR Power Supply Rejection Ratio V
S
= 2.5V to 12.5V 92 114 89 114 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500200 580 200 580 V/mV
Maximum Output Voltage Swing Output High, No Load 4.20 4.33 4.20 4.33 V
(Note 5) Output High, I
SOURCE
= 1mA 4.10 4.25 4.10 4.25 V
Output High, I
SOURCE
= 15mA 3.84 3.96 3.84 3.96 V
Output Low, No Load 0.005 0.008 0.005 0.008 V
Output Low, I
SINK
= 1mA 0.036 0.055 0.036 0.055 V
Output Low, I
SINK
= 15mA 0.370 0.530 0.370 0.530 V
I
S
Supply Current per Amplifier 1.8 2.9 4.0 1.8 2.9 4.0 mA
VS = 5V, VCM = 0.5V, VOUT = 0.5V, –40°C TA 85°C, unless otherwise noted. (Note 6)
LT1213AC LT1213C/LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 120 200 175 500 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 µV/°C
T(Note 4) 14-Pin DIP, SOIC Package 2 6 µV/°C
I
OS
Input Offset Current 15 50 20 75 nA
I
B
Input Bias Current 100 200 120 250 nA
Input Voltage Range 3.1 3.2 3.1 3.2 V
0.2 0 0.2 0 V
CMRR Common Mode Rejection Ratio V
CM
= 0.2V to 3.1V 88 104 84 104 dB
PSRR Power Supply Rejection Ratio V
S
= 2.5V to 12.5V 91 113 88 113 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500200 510 200 510 V/mV
Maximum Output Voltage Swing Output High, No Load 4.15 4.25 4.15 4.25 V
(Note 5) Output High, I
SOURCE
= 1mA 4.00 4.16 4.00 4.16 V
Output High, I
SOURCE
= 15mA 3.72 3.89 3.72 3.89 V
Output Low, No Load 0.006 0.009 0.006 0.009 V
Output Low, I
SINK
= 1mA 0.037 0.060 0.037 0.060 V
Output Low, I
SINK
= 15mA 0.380 0.550 0.380 0.550 V
I
S
Supply Current per Amplifier 1.5 2.9 4.0 1.5 2.9 4.0 mA
L7LJIJWW
5
LT1213/LT1214
5V
ELECTRICAL C CHARA TERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, –55°C TA 125°C, unless otherwise noted.
LT1213AM LT1213M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 140 250 200 500 µV
V
OS
Input Offset Voltage Drift 0.7 1.5 1.0 3.0 µV/°C
T(Note 4)
I
OS
Input Offset Current 20 70 25 100 nA
I
B
Input Bias Current 105 210 125 275 nA
Input Voltage Range 3.1 3.2 3.1 3.2 V
0.4 0.2 0.4 0.2 V
CMRR Common Mode Rejection Ratio V
CM
= 0.4V to 3.1V 87 104 83 104 dB
PSRR Power Supply Rejection Ratio V
S
= 2.5V to 12.5V 90 113 87 113 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500150 300 150 300 V/mV
Maximum Output Voltage Swing Output High, No Load 4.05 4.20 4.05 4.20 V
(Note 5) Output High, I
SOURCE
= 1mA 3.90 4.10 3.90 4.10 V
Output High, I
SOURCE
= 15mA 3.60 3.80 3.60 3.80 V
Output Low, No Load 0.007 0.012 0.007 0.012 mV
Output Low, I
SINK
= 1mA 0.040 0.070 0.040 0.070 mV
Output Low, I
SINK
= 15mA 0.400 0.750 0.400 0.750 mV
I
S
Supply Current per Amplifier 1.3 3.0 4.2 1.3 3.0 4.2 mA
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted.
LT1213AC LT1213C/LT1213M
LT1213AM LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 125 400 150 550 µV
I
OS
Input Offset Current 5 30 5 40 nA
I
B
Input Bias Current 70 150 90 190 nA
Input Voltage Range 13.5 13.8 13.5 13.8 V
–15.0 15.3 15.0 – 15.3 V
CMRR Common Mode Rejection Ratio V
CM
= –15V to 13.5V 90 107 86 107 dB
PSRR Power Supply Rejection Ratio V
S
= ±2V to ±18V 93 116 90 116 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 1200 4000 1200 4000 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 20mA 13.7 13.9 13.7 13.9 V
Output Low, I
SINK
= 20mA 14.3 14.5 –14.3 –14.5 V
I
O
Maximum Output Current (Note 10) ±30 ±50 ±30 ±50 mA
SR Slew Rate A
V
= –2 (Note 7) 10 12 10 12 V/µs
GBW Gain-Bandwidth Product f = 100kHz 15 28 15 28 MHz
I
S
Supply Current per Amplifier 2.0 3.4 4.7 2.0 3.4 4.7 mA
Channel Separation V
O
= ±10V, R
L
= 2k 128 140 128 140 dB
Minimum Supply Voltage Equal Split Supplies ±1.2 ±2.0 ±1.2 ±2.0 V
Full-Power Bandwidth A
V
= 1, V
O
= 20V
P-P
150 150 kHz
Settling Time 0.01%, A
V
= 1, V
O
= 10V 1.1 1.1 µs
+15V
ELECTRICAL C CHARA TERISTICS
Vus L7LJIJ§AB
6
LT1213/LT1214
VS = ±15V, VCM = 0V, VOUT = 0V, 0°C TA 70°C, unless otherwise noted.
+
15V
ELECTRICAL C CHARA TERISTICS
LT1213AC LT1213C/LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 150 425 200 650 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 µV/°C
T(Note 4) 14-Pin DIP, SOIC Package 2 6 µV/°C
I
OS
Input Offset Current 10 35 10 45 nA
I
B
Input Bias Current 90 160 95 200 nA
Input Voltage Range 13.4 13.5 13.4 13.5 V
14.9 –15.1 14.9 –15.1 V
CMRR Common Mode Rejection Ratio V
CM
= –14.9V to 13.4V 89 105 85 105 dB
PSRR Power Supply Rejection Ratio V
S
= ±2V to ±18V 92 115 89 115 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 1000 4000 1000 4000 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 15mA 13.8 14.0 13.8 14.0 V
Output Low, I
SINK
= 15mA 14.4 14.6 14.4 14.6 V
I
S
Supply Current per Amplifier 1.8 3.7 5.0 1.8 3.7 5.0 mA
VS = ±15V, VCM = 0V, VOUT = 0V, –55°C TA 125°C, unless otherwise noted.
LT1213AM LT1213M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 200 500 300 800 µV
V
OS
Input Offset Voltage Drift 0.7 1.5 1 3 µV/°C
T(Note 4)
I
OS
Input Offset Current 15 60 25 90 nA
I
B
Input Bias Current 100 200 110 250 nA
Input Voltage Range 13.1 13.2 13.1 13.2 V
–14.6 –14.8 –14.6 –14.8 V
CMRR Common Mode Rejection Ratio V
CM
= –14.6V to 13.1V 87 104 83 104 dB
PSRR Power Supply Rejection Ratio V
S
= ±2V to ±15V 90 114 87 114 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 800 1100 800 1100 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 15mA 13.6 13.8 13.6 13.8 V
Output Low, I
SINK
= 15mA 14.2 –14.5 14.2 14.5 V
I
S
Supply Current per Amplifier 1.3 4.0 5.4 1.3 4.0 5.4 mA
LT1213AC LT1213C/LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 175 450 250 700 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 0.7 1.5 1 3 µV/°C
T(Note 4) 14-Pin DIP, SOIC Package 2 6 µV/°C
I
OS
Input Offset Current 10 40 20 75 nA
I
B
Input Bias Current 95 180 105 220 nA
Input Voltage Range 13.1 13.2 13.1 13.2 V
14.8 –15.0 14.8 –15.0 V
CMRR Common Mode Rejection Ratio V
CM
= –14.8V to 13.1V 88 104 84 104 dB
PSRR Power Supply Rejection Ratio V
S
= ±2V to ±18V 91 114 88 114 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 1000 4000 1000 4000 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 15mA 13.7 13.9 13.7 13.9 V
Output Low, I
SINK
= 15mA 14.4 14.6 14.4 14.6 V
I
S
Supply Current per Amplifier 1.5 3.7 5.1 1.5 3.7 5.1 mA
VS = ±15V, VCM = 0V, VOUT = 0V, –40°C TA 85°C, unless otherwise noted. (Note 6)
L7LJIJWW
7
LT1213/LT1214
3.3V
ELECTRICAL C CHARA TERISTICS
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 8)
LT1213AC LT1213C/LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 100 175 150 375 µV
Input Voltage Range (Note 9) 1.7 1.8 1.7 1.8 V
0.1 –0.1 0.1 –0.1 V
Maximum Output Voltage Swing Output High, No Load 2.50 2.63 2.50 2.63 V
Output High, I
SOURCE
= 1mA 2.40 2.55 2.40 2.55 V
Output High, I
SOURCE
= 15mA 2.14 2.26 2.14 2.26 V
Output Low, No Load 0.005 0.008 0.005 0.008 V
Output Low, I
SINK
= 1mA 0.037 0.055 0.037 0.055 V
Output Low, I
SINK
= 15mA 0.400 0.530 0.400 0.530 V
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, –40°C TA 85°C, unless otherwise noted. (Note 6, 8)
LT1213AM LT1213M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 130 250 200 500 µV
Input Voltage Range (Note 9) 1.4 1.5 1.4 1.5 V
0.4 0.2 0.4 0.2 V
Maximum Output Voltage Swing Output High, No Load 2.35 2.50 2.35 2.50 V
Output High, I
SOURCE
= 1mA 2.20 2.40 2.20 2.40 V
Output High, I
SOURCE
= 15mA 1.90 2.10 1.90 2.10 V
Output Low, No Load 0.007 0.012 0.007 0.012 V
Output Low, I
SINK
= 1mA 0.040 0.070 0.040 0.070 V
Output Low, I
SINK
= 15mA 0.500 0.750 0.500 0.750 V
LT1213AC LT1213C/LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 120 200 175 500 µV
Input Voltage Range (Note 9) 1.4 1.5 1.4 1.5 V
0.2 0 0.2 0 V
Maximum Output Voltage Swing Output High, No Load 2.45 2.55 2.45 2.55 V
Output High, I
SOURCE
= 1mA 2.30 2.46 2.30 2.46 V
Output High, I
SOURCE
= 15mA 2.02 2.19 2.02 2.19 V
Output Low, No Load 0.006 0.009 0.006 0.009 V
Output Low, I
SINK
= 1mA 0.040 0.060 0.040 0.060 V
Output Low, I
SINK
= 15mA 0.410 0.550 0.410 0.550 V
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, –55°C TA 125°C, unless otherwise noted. (Note 8)
LT1213AC LT1213C/LT1213M
LT1213AM LT1214C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 75 150 100 275 µV
Input Voltage Range (Note 9) 1.8 2.1 1.8 2.1 V
0 0.3 0 – 0.3 V
Maximum Output Voltage Swing Output High, No Load 2.60 2.69 2.60 2.69 V
Output High, I
SOURCE
= 1mA 2.50 2.60 2.50 2.60 V
Output High, I
SOURCE
= 20mA 2.10 2.22 2.10 2.22 V
Output Low, No Load 0.004 0.007 0.004 0.007 V
Output Low, I
SINK
= 1mA 0.033 0.050 0.033 0.050 V
Output Low, I
SINK
= 20mA 0.475 0.620 0.475 0.620 V
I
O
Maximum Output Current ±30 ±50 ±30 ±50 mA
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C TA 70°C, unless otherwise noted. (Note 8)
L7 LINEN?
8
LT1213/LT1214
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: A heat sink may be required to keep the junction temperature
below absolute maximum when the output is shorted indefinitely.
Note 3: T
J
is calculated from the ambient temperature T
A
and power
dissipation P
D
according to the following formulas:
LT1213MJ8, LT1213AMJ8: T
J
= T
A
+ (P
D
× 100°C/W)
LT1213CN8, LT1213ACN8: T
J
= T
A
+ (P
D
× 100°C/W)
LT1213CS8: T
J
= T
A
+ (P
D
× 150°C/W)
LT1214CN: T
J
= T
A
+ (P
D
× 70°C/W)
LT1214CS: T
J
= T
A
+ (P
D
× 100°C/W)
Note 4: This parameter is not 100% tested.
Note 5: Guaranteed by correlation to 3.3V and ±15V tests.
Note 6: The LT1213/LT1214 are designed, characterized and expected to
meet these extended temperature limits, but are not tested at –40°C and
85°C. Guaranteed I grade parts are available. Consult factory.
Note 7: Slew rate is measured between ±8.5V on an output swing of ±10V
on ±15V supplies.
Note 8: Most LT1213/LT1214 electrical characteristics change very little
with supply voltage. See the 5V tables for characteristics not listed in the
3.3V table.
Note 9: Guaranteed by correlation to 5V and ±15V tests.
Note 10: Guaranteed by correlation to 3.3V tests.
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
ELECTRICAL C CHARA TERISTICS
Distribution of Offset Voltage Drift
Distribution of Input Offset Voltage with Temperature Distribution of Input Offset Voltage
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
–3
PERCENT OF UNITS (%)
50
40
30
20
10
03
1213/14 G02
–2 –1 1
LT1213 J8 PACKAGE
LT1213 N8 PACKAGE
V
S
= 5V
02
INPUT OFFSET VOLTAGE (µV)
350
PERCENT OF UNITS (%)
70
60
50
40
30
20
10
0 –150 50 150
1213/14 G04
250 –50 250 350
LT1213 S8 PACKAGE
LT1214 N PACKAGE
LT1214 S PACKAGE
V
S
= 5V
Distribution of Offset Voltage Drift
Distribution of Input Offset Voltage with Temperature Distribution of Input Offset Voltage
INPUT OFFSET VOLTAGE (µV)
350
PERCENT OF UNITS (%)
70
60
50
40
30
20
10
0 –150 50 150
1213/14 G01
250 –50 250 350
LT1213 J8 PACKAGE
LT1213 N8 PACKAGE
V
S
= 5V
INPUT OFFSET VOLTAGE (µV)
700
PERCENT OF UNITS (%)
70
60
50
40
30
20
10
0 300 100 300
1213/14 G03
500 –100 500 700
LT1213 J8 PACKAGE
LT1213 N8 PACKAGE
V
S
= ±15V
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
–6
PERCENT OF UNITS (%)
50
40
30
20
10
06
1213/14 G05
–4 –2 2
LT1213 S8 PACKAGE
LT1214 N PACKAGE
LT1214 S PACKAGE
V
S
= 5V
04
INPUT OFFSET VOLTAGE (µV)
700
PERCENT OF UNITS (%)
70
60
50
40
30
20
10
0 300 100 300
1213/14 G06
500 –100 500 700
LT1213 S8 PACKAGE
LT1214 N PACKAGE
LT1214 S PACKAGE
V
S
= ±15V
TA = 25% um TA = 755m TA = ‘2500 L7LJIJ§N2
9
LT1213/LT1214
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
Voltage Gain, Phase vs Gain-Bandwidth Product,
Voltage Gain vs Frequency Frequency Phase Margin vs Supply Voltage
FREQUENCY (Hz)
100k
VOLTAGE GAIN (dB)
60
40
20
0
–20 1M 10M 100M
1213/14 G08
100
80
60
40
20
0
–20
–40
–60
PHASE SHIFT (DEG)
PHASE
GAIN
V
S
= 5V
V
S
= 5V
V
S
= ±15V
C
L
= 20pF
R
L
= 2k V
S
= ±15V
FREQUENCY (Hz)
1
VOLTAGE GAIN (dB)
100M
1213/14 G07
100 10k 1M
140
120
100
80
60
40
20
0
–20 10 1k 100k 10M
C
L
= 20pF
R
L
= 2k
V
S
= 5V
V
S
= ±15V
TOTAL SUPPLY VOLTAGE (V)
1
GAIN-BANDWIDTH PRODUCT (MHz)
32
30
28
26
24
22
20
10 40
1213/14 G09
60
50
40
30
20
10
0
35720 30
PHASE MARGIN (DEG)
T
A
= 25°C
T
A
= 125°C
T
A
= 25°C, 125°C
T
A
= –55°C
T
A
= –55°C
Slew Rate vs Temperature Slew Rate vs Supply Voltage Capacitive Load Handling
TOTAL SUPPLY VOLTAGE (V)
0
SLEW RATE (V/µs)
816 20 36
412 24 28 32
16
14
12
10
8
6
4
1213/14 G11
AV = –2
RL = 10k TA = 125°C
TA = 25°C
TA = –55°C
FREQUENCY (Hz)
OUTPUT SWING (V
P-P
)
5
4
3
2
1
010k 100k 1M
1213/14 G13
1k
A
V
= –1
A
V
= 1
V
S
= 5V
100
FREQUENCY (Hz)
OUTPUT SWING (V
P-P
)
30
25
20
15
10
5
010k 100k 1M
1213/14 G14
1k100
V
S
= ±15V
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION AND NOISE (%)
10 1k 10k 100k
1213/14 G15
100
0.1
0.01
0.001
0.0001
V
S
= 5V
V
O
= 3V
P-P
R
L
= 1k
A
V
= 10
A
V
= 1
Undistorted Output Swing Undistorted Output Swing Total Harmonic Distortion and
vs Frequency, VS = 5V vs Frequency, VS = ±15V Noise vs Frequency
TEMPERATURE (°C)
–50
SLEW RATE (V/µs)
18
16
14
12
10
8
6
4
2–25 05075
1213/14 G10
100 125
25
TA = 25°C
AV = –2
RL = 10k VS = ±15V
VS = 5V
CAPACITIVE LOAD (pF)
10
OVERSHOOT (%)
80
70
60
50
40
30
20
10
0100
1213/14 G12
A
V
= 1
A
V
= 5
A
V
= 10
V
S
= 5V
1000
//// 4/ ‘sauRcE = WM \ L7LJIJ§§B
10
LT1213/LT1214
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
Open-Loop Voltage Gain Positive Output Saturation
vs Supply Voltage Open-Loop Gain, VS = 5V Voltage vs Temperature
Output Short-Circuit Current
Channel Separation vs Frequency vs Temperature Output Impedance vs Frequency
Negative Output Saturation
Voltage Gain vs Load Resistance Open-Loop Gain, VS = ±15V Voltage vs Temperature
INPUT, 5µV/DIV
TOTAL SUPPLY VOLTAGE (V)
0
OPEN-LOOP VOLTAGE GAIN (V/mV)
816 20 36
412 24 28 32
6k
5k
4k
3k
2k
1k
0
1213/14 G16
TA = 25°C
TA = –55°C
RL = 2k
TA = 125°C
01234
OUTPUT (V)
1213/14 G17
RL = 2k
RL =
500
INPUT, 5µV/DIV
LOAD RESISTANCE ()
10
OPEN-LOOP VOLTAGE GAIN (V/mV)
10k
1k
100
10 100 1k 10k
1213/14 G19
TA = 25°C
VS = 5V
VS = ±15V
–10 0 10
OUTPUT (V)
1213/14 G20
RL = 2k
RL =
500
FREQUENCY (Hz)
CHANNEL SEPARATION (dB)
140
130
120
110
100
90
80
70
60
50
40
30
10k 100k 10M
1213/14 G22
1M
V
S
= ±15V
T
A
= 25°C
TEMPERATURE (°C)
–50
SATURATION VOLTAGE, V
OUT
– V
(mV)
1000
100
10
125 125
1213/14 G21
I
SINK
= 30mA
V
S
= 5V
0 25 50 10075
I
SINK
= 10mA
I
SINK
= 1mA
I
SINK
= 10µA
FREQUENCY (Hz)
10k
OUTPUT IMPEDANCE ()
1000
100
10
1
0.1
0.01 100k 1M 10M
1213/14 G24
AV = 100
VS = ±15V
AV = 10 AV = 1
TEMPERATURE (°C)
–50
OUTPUT SHORT-CIRCUIT CURRENT (mA)
70
60
50
40
30 25 75
–25 0 50 100 125
1213/14 G23
V
S
= ±15V
SOURCING
OR SINKING
V
S
= 5V
SOURCING
TEMPERATURE (°C)
–50
SATURATION VOLTAGE, V
+
– V
OUT
(V)
1.4
1.2
1.0
0.8
0.6
0.4
0.2 25 75
–25 0 50 100 125
I
SOURCE
= 20mA
V
S
= 5V
I
SOURCE
= 10mA
I
SOURCE
= 1mA
I
SOURCE
= 10µA
1213/14 G18
szmv mvERTmG L7L|HEAP
11
LT1213/LT1214
250µV/DIV
100ns/DIV
VS = 5V
AV = 1 1213/14 G31
500mV/DIV
5V Settling
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
±15V Small-Signal Response
50ns/DIV
VS = ±15V
AV = 1 1213/14 G28
5V Small-Signal Response
Settling Time to 0.01%
vs Output Step
10V
0V
–10V
±15V Large-Signal Response
3V
0V
5V Large-Signal Response
±15V Large-Signal Response
3V
0V
5V Large-Signal Response
1mV/DIV
2V/DIV
±15V Settling
20mV/DIV
20mV/DIV
10V
0V
–10V
200ns/DIV
VS = ±15V
AV = –1 1213/14 G32
200ns/DIV
VS = 5V
AV = 1 1213/14 G26
50ns/DIV
VS = 5V
AV = 1 1213/14 G25
200ns/DIV
VS = 5V
AV = –1
RF = RG = 1k
CF = 20pF 1213/14 G27
1µs/DIV
VS = ±15V
AV = 1 1213/14 G29
1µs/DIV
VS = ±15V
AV = –1
RF = RG = 1k 1213/14 G30
N CURRENT NmsE ULM
12
LT1213/LT1214
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
TIME AFTER POWER-UP (SEC)
0
CHANGE IN OFFSET VOLTAGE (µV)
2
1
0
–1
–2 80
1213/14 G36
20 40 60 100
V
S
= 5V
R
L
=
2 TYPICAL AMPLIFIERS
TEMPERATURE (°C)
COMMON MODE RANGE (V)
V
+
V
+
–1
V
+
–2
1213/14 G39
V
+1
V
V
–1–50 25 75
–25 0 50 100 125
Input Noise Current, Noise Common Mode Rejection Ratio Input Referred Power Supply
Voltage Density vs Frequency vs Frequency Rejection Ratio vs Frequency
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
110
105
100
95
90
85
80
75 25 75
–25 0 50 100 125
1213/14 G37
I
OS
+I
B
–I
B
V
S
= 5V
Input Bias Current vs Common Mode Range
Input Bias Current vs Temperature Common Mode Voltage vs Temperature
SUPPLY VOLTAGE (V)
0
SUPPLY CURRENT PER AMPLIFIER (mA)
4
3
2
1
0245
1213/14 G34
13
T
A
= 125°C
T
A
= –55°C
T
A
= 25°C
Supply Current vs Supply Votage Supply Current vs Temperature Warm-Up Drift vs Time
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (mA)
4.2
3.8
3.4
3.0
2.6
2.2
1.8 –25 05075
1213/14 G35
100 125
25
V
S
= 5V
V
S
= ±15V
COMMON MODE VOLTAGE (V)
–1
INPUT BIAS CURRENT (nA)
0
–20
–40
–60
–80
100
120
140
160
180
200 3
1213/14 G38
0124
T
A
= –55°C
V
S
= 5V
T
A
= 125°CT
A
= 25°C
FREQUENCY (Hz)
130
120
110
100
90
80
70
60
50
40
301k 100k 1M 10M
1213/14 G42
10k
NEGATIVE SUPPLY
POWER SUPPLY REJECTION RATIO (dB)
VS = ±15V
AV = 100
POSITIVE SUPPLY
FREQUENCY (Hz)
10k
COMMON MODE REJECTION RATIO (dB)
120
110
100
90
80
70
60
50
40
30
20 100k 1M 10M
1213/14 G41
V
S
= 5V
FREQUENCY (Hz)
20
18
16
14
12
10
8
6
4
2
010 1k 10k 100k
1213/14 G40
100
CURRENT NOISE
INPUT NOISE VOLTAGE DENSITY (nV/Hz)
V
S
= ±15V
T
A
= 25°C
R
S
= 0
VOLTAGE NOISE
INPUT NOISE CURRENT DENSITY (pA/Hz)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
L7LJIJWW
13
LT1213/LT1214
U
S
A
O
PPLICATI
WU
U
I FOR ATIO
Supply Voltage
The LT1213/LT1214 op amps are fully functional and all
internal bias circuits are in regulation with 2.2V of supply.
The amplifiers will continue to function with as little as
1.5V, although the input common mode range and the
phase margin are about gone. The minimum operating
supply voltage is guaranteed by the PSRR tests which are
done with the input common mode equal to 500mV and a
minimum supply voltage of 2.5V. The LT1213/LT1214 are
guaranteed over the full –55°C to 125°C range with a
minimum supply voltage of 2.5V.
The positive supply pin of the LT1213/LT1214 should be
bypassed with a small capacitor (about 0.01µF) within an
inch of the pin. When driving heavy loads and for good
settling time, an additional 4.7µF capacitor should be
used. When using split supplies, the same is true for the
negative supply pin.
Power Dissipation
The LT1213/LT1214 amplifiers combine high speed and
large output current drive into very small packages. Be-
cause these amplifiers work over a very wide supply range,
it is possible to exceed the maximum junction temperature
under certain conditions. To insure that the LT1213/
LT1214 are used properly, calculate the worst case power
dissipation, define the maximum ambient temperature,
select the appropriate package and then calculate the
maximum junction temperature.
The worst case amplifier power dissipation is the total of
the quiescent current times the total power supply voltage
plus the power in the IC due to the load. The quiescent
supply current of the LT1213/LT1214 has a positive tem-
perature coefficient. The maximum supply current of each
amplifier at 125°C is given by the following formula:
I
SMAX
= 4.2 + 0.048 × (V
S
– 5) in mA
V
S
is the total supply voltage.
The power in the IC due to the load is a function of the
output voltage, the supply voltage and load resistance. The
worst case occurs when the output voltage is at half
supply, if it can go that far, or its maximum value if it
cannot reach half supply.
For example, calculate the worst case power dissipation
while operating on ±15V supplies and driving a 500 load.
I
SMAX
= 4.2 + 0.048 × (30 – 5) = 5.4mA
P
DMAX
= 2 × V
S
× I
SMAX
+ (V
S
– V
OMAX
) × V
OMAX
/R
L
P
DMAX
= 2 × 15V
× 5.4mA + (15V – 7.5V) × 7.5V/500
= 0.162 + 0.113 = 0.275 Watt per Amp
If this is the dual LT1213, the total power in the package is
twice that, or 0.550W. Now calculate how much the die
temperature will rise above the ambient. The total power
dissipation times the thermal resistance of the package
gives the amount of temperature rise. For this example, in
the SO-8 surface mount package, the thermal resistance is
150°C/W junction-to-ambient in still air.
Temperature Rise = P
DMAX
× θ
JA
= 0.550W × 150°C/W
= 82.5°C
The maximum junction temperature allowed in the plastic
package is 150°C. Therefore the maximum ambient al-
lowed is the maximum junction temperature less the
temperature rise.
Maximum Ambient = 150°C – 82.5°C = 67.5°C
That means the SO-8 dual can be operated at or below
67.5°C on ±15V supplies with a 500 load.
As a guideline to help in the selection of the LT1213/
LT1214, the following table describes the maximum sup-
ply voltage that can be used with each part based on the
following assumptions:
1. The maximum ambient is 70°C or 125°C depending on
the part rating.
2. The load is 500 including the feedback resistors.
3. The output can be anywhere between the supplies.
PART MAX SUPPLIES MAX POWER AT MAX T
A
LT1213MJ8 18.0V or ±14.1V 500mW
LT1213CN8 23.7V or ±18.0V 800mW
LT1213CS8 18.7V or ±14.7V 533mW
LT1214CN 19.5V or ±15.4V 1143mW
LT1214CS 15.8V or ±12.2V 800mW
L7LJIJWW
14
LT1213/LT1214
U
S
A
O
PPLICATI
WU
U
I FOR ATIO
positive rail, is about 100 as the output starts to source
current; this resistance drops to about 20 as the current
increases. Therefore when the output sources 1mA, the
output will swing to within 0.7V of the positive supply.
While sourcing 30mA, it is within 1.25V of the positive
supply.
The output of the LT1213/LT1214 will swing to within 4mV
of the negative supply while sinking zero current. Thus, in
a typical single supply application with the load going to
ground, the output will go to within 4mV of ground. The
open-loop output resistance when the output is driven
hard into the negative rail is about 29 at low currents and
reduces to about 23 at high currents. Therefore when
the output sinks 1mA, the output is about 33mV above the
negative supply and while sinking 30mA, it is about
690mV above it.
The output of the LT1213/LT1214 has reverse-biased
diodes to each supply. If the output is forced beyond either
supply, unlimited currents will flow. If the current is
transient and limited to several hundred mA, no damage
will occur.
Feedback Components
Because the input currents of the LT1213/LT1214 are less
than 200nA, it is possible to use high value feedback
resistors to set the gain. However, care must be taken to
insure that the pole that is formed by the feedback resis-
tors and the input capacitance does not degrade the
stability of the amplifier. For example, if a single supply,
noninverting gain of two is set with two 10k resistors, the
LT1213/LT1214 will probably oscillate. This is because
the amplifier goes open-loop at 6MHz (6dB of gain) and
has 45° of phase margin. The feedback resistors and the
10pF input capacitance generate a pole at 3MHz that
introduces 63° of phase shift at 6MHz! The solution is
simple, lower the values of the resistors or add a feedback
capacitor of 10pF or more.
Inputs
Typically at room temperature, the inputs of the LT1213/
LT1214 can common mode 400mV below ground (V
)
and to within 1.2V of the positive supply with the amplifier
still functional. However, the input bias current and offset
voltage will shift as shown in the characteristic curves. For
full precision performance, the common mode range
should be limited between ground (V
) and 1.5V below the
positive supply.
When either of the inputs is taken below ground (V
) by
more than about 700mV, that input current will increase
dramatically. The current is limited by internal 100
resistors between the input pins and diodes to each
supply. The output will remain low (no phase reversal) for
inputs 1.3V below ground (V
). If the output does not have
to sink current, such as in a single supply system with a 1k
load to ground, there is no phase reversal for inputs up to
8V below ground.
There are no clamps across the inputs of the LT1213/
LT1214 and therefore each input can be forced to any
voltage between the supplies. The input current will re-
main constant at about 100nA over most of this range.
When an input gets closer than 1.5V to the positive supply,
that input current will gradually decrease to zero until the
input goes above the supply, then it will increase due to the
previously mentioned diodes. If the inverting input is held
more positive than the noninverting input by 200mV or
more, while at the same time the noninverting input is
within 300mV of ground (V
), then the supply current will
increase by 2mA and the noninverting input current will
increase to about 10µA. This should be kept in mind in
comparator applications where the inverting input stays
above ground (V
) and the noninverting input is at or near
ground (V
).
Output
The output of the LT1213/LT1214 will swing to within
0.61V of the positive supply with no load. The open-loop
output resistance, when the output is driven hard into the
a 5 ML. KN mu r N owl. __ __ be M‘ 9 mi Q *r 181 E KN 9 mm :1 18 w.) NH L7LJIJMW
15
LT1213/LT1214
U
S
A
O
PPLICATI
WU
U
I FOR ATIO
Comparator Applications
Sometimes it is desirable to use an op amp as a compara-
tor. When operating the LT1213/LT1214 on a single 3.3V
or 5V supply, the output interfaces directly with most TTL
and CMOS logic.
The response time of the LT1213/LT1214 is a strong
function of the amount of input overdrive as shown in the
4
2
0
100
0
4
2
0
100
0
5µs/DIV
V
S
= 5V 1213/14 AI02
R
L
=
LT1213 Comparator Response (+)
20mV, 10mV, 5mV, 2mV Overdrives LT1213 Comparator Response (–)
20mV, 10mV, 5mV, 2mV Overdrives
W
I
SPL
II
FED S
W
A
CHETIC
following photos. These amplifiers are unity-gain stable
op amps and not fast comparators, therefore, the logic
being driven may oscillate due to the long transition time.
The output can be speeded up by adding 20mV or more of
hysteresis (positive feedback), but the offset is then a
function of the input direction.
INPUT (mV) OUTPUT (V)
OUTPUT (V)
INPUT (mV)
V
S
= 5V 1213/14 AI01
R
L
=
5µs/DIV
CI
Q5
Q10
CF
RF
I7I8
CO
V
CMBIAS
OUT
V+
I6
I5
I4
I3
I2
I1
–IN +IN
1213/14 SS
Q7
Q9
Q8
Q11
Q12
Q14 Q15
Q13
Q16
Q6
Q3 Q4
Q1 Q2
1 7i :fi *4 gm: W : x/\ M L7 LINEN?
16
LT1213/LT1214
U
PACKAGE DESCRIPTIO
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
J8 1298
0.014 – 0.026
(0.360 – 0.660)
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.125
3.175
MIN
0.100
(2.54)
BSC
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457) 0° – 15°
0.005
(0.127)
MIN
0.405
(10.287)
MAX
0.220 – 0.310
(5.588 – 7.874)
1234
8765
0.025
(0.635)
RAD TYP
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
CORNER LEADS OPTION
(4 PLCS)
0.045 – 0.065
(1.143 – 1.651)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
OBSOLETE PACKAGE
WWI—WW ULHJU VH—H—VVH—H—H—V T l u u u u u u u Fifi 74‘ W i M L I 9' *w ¢ WW 1H Hf f L74 » ‘JLi L7LJIJWW
17
LT1213/LT1214
U
PACKAGE DESCRIPTIO
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N8 1098
0.100
(2.54)
BSC
0.065
(1.651)
TYP
0.045 – 0.065
(1.143 – 1.651)
0.130 ± 0.005
(3.302 ± 0.127)
0.020
(0.508)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
0.125
(3.175)
MIN
12 34
8765
0.255 ± 0.015*
(6.477 ± 0.381)
0.400*
(10.160)
MAX
0.009 – 0.015
(0.229 – 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.325 +0.035
0.015
+0.889
0.381
8.255
()
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
N14 1098
0.020
(0.508)
MIN
0.125
(3.175)
MIN
0.130 ± 0.005
(3.302 ± 0.127)
0.045 – 0.065
(1.143 – 1.651)
0.065
(1.651)
TYP
0.018 ± 0.003
(0.457 ± 0.076)
0.100
(2.54)
BSC
0.005
(0.125)
MIN
0.255 ± 0.015*
(6.477 ± 0.381)
0.770*
(19.558)
MAX
31 24567
8910
11
1213
14
0.009 – 0.015
(0.229 – 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.325 +0.035
0.015
+0.889
0.381
8.255
()
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
HHHH L7LJIJWW
18
LT1213/LT1214
U
PACKAGE DESCRIPTIO
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
0.016 – 0.050
(0.406 – 1.270)
0.010 – 0.020
(0.254 – 0.508)× 45°
0°8° TYP
0.008 – 0.010
(0.203 0.254)
SO8 1298
0.053 – 0.069
(1.346 1.752)
0.014 – 0.019
(0.355 – 0.483)
TYP
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
BSC
1234
0.150 – 0.157**
(3.810 – 3.988)
8765
0.189 – 0.197*
(4.801 – 5.004)
0.228 – 0.244
(5.791 – 6.197)
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
iiHHHHHHHH ,7HHHHHHHH :¢ ¢ ,7W 74 L ‘47 L7LJIJWW
19
LT1213/LT1214
U
PACKAGE DESCRIPTIO
S Package
16-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
0.016 – 0.050
(0.406 – 1.270)
0.010 – 0.020
(0.254 – 0.508)× 45°
0° – 8° TYP
0.008 – 0.010
(0.203 – 0.254)
12345678
0.150 – 0.157**
(3.810 – 3.988)
16 15 14 13
0.386 – 0.394*
(9.804 – 10.008)
0.228 – 0.244
(5.791 – 6.197)
12 11 10 9
S16 1098
0.053 – 0.069
(1.346 – 1.752)
0.014 – 0.019
(0.355 – 0.483)
TYP
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
BSC
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However,
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that
the interconnection of its circuits as described herein will not infringe on existing patent rights.
J H> L7LJIJWW
20
LT1213/LT1214
U
SA
O
PPLICATITYPICAL
COMMON MODE VOLTAGE (V)
0.01
EACH INPUT BIAS CURRENT (nA)
100
80
60
40
20
00.1 1 10
1213/14 TA03b
V
+
= 5V
Input Bias Current vs
Common Mode Voltage
Instrumentation Amplifier with Guard/Shield Driver and Input Bias Current Cancellation
Ground Current Sense Amplifier Difference Amplifier with Wide Input Common Mode Range
1M
RF
1020
V+
+1/4
LT1214
A
+
22pF
INPUTS
+
OUTPUT
+
1/4
LT1214
D
5000pF
1k
RG
113
1/4
LT1214
B
1M*
1M
+1/4
LT1214
C
200
RF
1020
10k**
1k 10k
RG
113
GUARD
GUARD
1213/14 TA03a
COMMON MODE RIN = 3G
DIFFERENTIAL RIN = 2M
BANDWIDTH = 2MHz
tr = 170ns
GAIN = 10 1 + = 100
RF
RG
()
*
** TRIM FOR INPUT BIAS CURRENT
TRIM FOR CMRR
0.1µF
1k
V
+
3.3V
+
1/2
LT1213
LT1004-1.2
10k
+IN
750
0.1µF
GAIN = 1; V
OUT
= V
REF
FOR V
IN(DIF)
= 0
±10V COMMON MODE RANGE
BANDWIDTH = 3MHz
1k10k
1.2V
10k
10k
–IN
V
OUT
V
REF
1213/14 TA05
+
5V
1/2
LT1213
I
IN
1213/14 TA04
V
O
= 1V/A
100
V
+
1910
100pF
LOAD
0.05OFFSET 5.5mA
BANDWIDTH = 500kHz
t
r
= 1µs
0.1µF
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
FAX: (408) 434-0507
www.linear.com
12134fa LT/CP 1001 1.5K REV A • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 1993
RELATED PARTS
PART NUMBER DESCRIPTION COMMENTS
LT1211/LT1212 14MHz, 7V/µs Single Supply Dual and Quad Precision Op Amps Half the Supply Current of the LT1213
LT1215/LT1216 23MHz, 50V/µs Single Supply Dual and Quad Precision Op Amps Four Times the Slew Rate of the LT1213
LT1630/LT1631 30MHz, 10V/µs Dual and Quad Rail-to-Rail Rail-to-Rail LT1213
Input and Output Precision Op Amps

Products related to this Datasheet

IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 4 CIRCUIT 16SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 4 CIRCUIT 14DIP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 4 CIRCUIT 16SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 4 CIRCUIT 16SO
IC OPAMP GP 2 CIRCUIT 8SO