MAX V Device Handbook
May 2011
MV51003-1.2
Subscribe
© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.
3. DC and Switching Characteristics for
MAX V Devices
This chapter covers the electrical and switching characteristics for MAX®V devices.
Electrical characteristics include operating conditions and power consumptions. This
chapter also describes the timing model and specifications.
You must consider the recommended DC and switching conditions described in this
chapter to maintain the highest possible performance and reliability of the MAX V
devices.
This chapter contains the following sections:
“Operating Conditions” on page 3–1
“Power Consumption” on page 3–10
“Timing Model and Specifications” on page 3–10
Operating Conditions
Table 31 through Table 3–15 on page 3–9 list information about absolute maximum
ratings, recommended operating conditions, DC electrical characteristics, and other
specifications for MAX V devices.
Absolute Maximum Ratings
Table 3 1 lists the absolute maximum ratings for the MAX V device family.
Table 3–1. Absolute Maximum Ratings for MAX V Devices (Note 1), (2)
Symbol Parameter Conditions Minimum Maximum Unit
VCCINT Internal supply voltage With respect to ground –0.5 2.4 V
VCCIO I/O supply voltage –0.5 4.6 V
VIDC input voltage –0.5 4.6 V
IOUT DC output current, per pin –25 25 mA
TSTG Storage temperature No bias –65 150 °C
TAMB Ambient temperature Under bias (3) –65 135 °C
TJJunction temperature TQFP and BGA packages
under bias 135 °C
Notes to Table 3–1:
(1) For more information, refer to the Operating Requirements for Altera Devices Data Sheet.
(2) Conditions beyond those listed in Table 31 may cause permanent damage to a device. Additionally, device operation at the absolute maximum
ratings for extended periods of time may have adverse affects on the device.
(3) For more information about “under bias” conditions, refer to Table 32.
May 2011
MV51003-1.2
Max. Duly Cyc‘e
3–2 Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
MAX V Device Handbook May 2011 Altera Corporation
Recommended Operating Conditions
Table 3 2 lists recommended operating conditions for the MAX V device family.
Table 3–2. Recommended Operating Conditions for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCINT (1) 1.8-V supply voltage for internal logic and
in-system programming (ISP) MAX V devices 1.71 1.89 V
VCCIO (1)
Supply voltage for I/O buffers, 3.3-V
operation 3.00 3.60 V
Supply voltage for I/O buffers, 2.5-V
operation 2.375 2.625 V
Supply voltage for I/O buffers, 1.8-V
operation 1.71 1.89 V
Supply voltage for I/O buffers, 1.5-V
operation 1.425 1.575 V
Supply voltage for I/O buffers, 1.2-V
operation 1.14 1.26 V
VIInput voltage (2), (3), (4) –0.5 4.0 V
VOOutput voltage 0 VCCIO V
TJOperating junction temperature
Commercial range 0 85 °C
Industrial range –40 100 °C
Extended range (5) –40 125 °C
Notes to Table 3–2:
(1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended
operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends
that you read back the UFM contents and verify it against the intended write data).
(2) The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods
shorter than 20 ns.
(3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100%
duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter.
VIN Max. Duty Cycle
4.0 V 100% (DC)
4.1 V 90%
4.2 V 50%
4.3 V 30%
4.4 V 17%
4.5 V 10%
(4) All pins, including the clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are powered.
(5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM
programming using the logic array interface is not guaranteed in this range.
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–3
Operating Conditions
May 2011 Altera Corporation MAX V Device Handbook
Programming/Erasure Specifications
Table 3 3 lists the programming/erasure specifications for the MAX V device family.
DC Electrical Characteristics
Table 3 4 lists DC electrical characteristics for the MAX V device family.
Table 3–3. Programming/Erasure Specifications for MAX V Devices
Parameter Block Minimum Typical Maximum Unit
Erase and reprogram cycles UFM — 1000 (1) Cycles
Configuration flash memory (CFM) 100 Cycles
Note to Table 3–3:
(1) This value applies to the commercial grade devices. For the industrial grade devices, the value is 100 cycles.
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 1 of 2)
Symbol Parameter Conditions Minimum Typical Maximum Unit
IIInput pin leakage current VI = VCCIO max to 0 V (2) –10 10 µA
IOZ
Tri-stated I/O pin leakage
current VO = VCCIO max to 0 V (2) –10 10 µA
ICCSTANDBY
VCCINT supply current
(standby) (3)
5M40Z, 5M80Z, 5M160Z, and
5M240Z (Commercial grade)
(4), (5)
—2590µA
5M240Z (Commercial grade)
(6) —2796µA
5M40Z, 5M80Z, 5M160Z, and
5M240Z (Industrial grade)
(5), (7)
25 139 µA
5M240Z (Industrial grade) (6) 27 152 µA
5M570Z (Commercial grade)
(4) —2796µA
5M570Z (Industrial grade) (7) 27 152 µA
5M1270Z and 5M2210Z 2 mA
VSCHMITT (8) Hysteresis for Schmitt
trigger input (9)
VCCIO = 3.3 V 400 mV
VCCIO = 2.5 V 190 mV
ICCPOWERUP
VCCINT supply current
during power-up (10) MAX V devices 40 mA
RPULLUP
Value of I/O pin pull-up
resistor during user
mode and ISP
VCCIO = 3.3 V (11) 5—25k
VCCIO = 2.5 V (11) 10 40 k
VCCIO = 1.8 V (11) 25 60 k
VCCIO = 1.5 V (11) 45 95 k
VCCIO = 1.2 V (11) 80 130 k
3–4 Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
MAX V Device Handbook May 2011 Altera Corporation
IPULLUP
I/O pin pull-up resistor
current when I/O is
unprogrammed
300 µA
CIO
Input capacitance for
user I/O pin ——8pF
CGCLK
Input capacitance for
dual-purpose GCLK/user
I/O pin
——8pF
Notes to Table 3–4:
(1) Typical values are for TA = 25°C, VCCINT = 1.8 V and VCCIO = 1.2, 1.5, 1.8, 2.5, or 3.3 V.
(2) This value is specified for normal device operation. The value may vary during power-up. This applies to all VCCIO settings (3.3, 2.5, 1.8, 1.5,
and 1.2 V).
(3) VI = ground, no load, and no toggling inputs.
(4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C.
(5) Not applicable to the T144 package of the 5M240Z device.
(6) Only applicable to the T144 package of the 5M240Z device.
(7) Industrial temperature ranges from –40°C to 100°C with the maximum current at 100°C.
(8) This value applies to commercial and industrial range devices. For extended temperature range devices, the VSCHMITT typical value is 300 mV
for VCCIO = 3.3 V and 120 mV for VCCIO = 2.5 V.
(9) The
TCK
input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
(10) This is a peak current value with a maximum duration of tCONFIG time.
(11) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 2 of 2)
Symbol Parameter Conditions Minimum Typical Maximum Unit
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–5
Operating Conditions
May 2011 Altera Corporation MAX V Device Handbook
Output Drive Characteristics
Figure 3–1 shows the typical drive strength characteristics of MAX V devices.
I/O Standard Specifications
Table 3 5 through Table 3–13 on page 3–8 list the I/O standard specifications for the
MAX V device family.
Figure 3–1. Output Drive Characteristics of MAX V Devices (Note 1)
Notes to Figure 3–1:
(1) The DC output current per pin is subject to the absolute maximum rating of Table 3–1 on page 3–1.
(2) 1.2-V VCCIO is only applicable to the maximum drive strength.
0
5
10
15
20
25
30
35
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Voltage (V)
Typical I
O
Output Current (mA)
3.3-V VCCIO
2.5-V VCCIO
1.8-V VCCIO
1.5-V VCCIO
(Minimum Drive Strength)
MAX V Output Drive I
OH
Characteristics
0
5
10
15
20
25
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Voltage (V)
Typical I
O
Output Current (mA)
3.3-V VCCIO
2.5-V VCCIO
1.8-V VCCIO
1.5-V VCCIO
(Minimum Drive Strength)
MAX V Output Drive I
OL
Characteristics
Voltage (V)
Typical I
O
Output Current (mA)
3.3-V VCCIO
2.5-V VCCIO
1.8-V VCCIO
1.5-V VCCIO
(Maximum Drive Strength)
MAX V Output Drive I
OL
Characteristics
1.2-V VCCIO (2)
MAX V Output Drive I
OH
Characteristics
(Maximum Drive Strength)
0
10
20
30
40
50
60
70
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Voltage (V)
Typical I
O
Output Current (mA)
3.3-V VCCIO
2.5-V VCCIO
1.8-V VCCIO
1.5-V VCCIO
1.2-V VCCIO (2)
Table 3–5. 3.3-V LVTTL Specifications for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCIO I/O supply voltage 3.0 3.6 V
VIH High-level input voltage 1.7 4.0 V
VIL Low-level input voltage –0.5 0.8 V
VOH High-level output voltage IOH = –4 mA (1) 2.4 — V
VOL Low-level output voltage IOL = 4 mA (1) —0.45V
Note to Table 3–5:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
3–6 Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
MAX V Device Handbook May 2011 Altera Corporation
Table 3–6. 3.3-V LVCMOS Specifications for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCIO I/O supply voltage 3.0 3.6 V
VIH High-level input voltage 1.7 4.0 V
VIL Low-level input voltage –0.5 0.8 V
VOH High-level output voltage VCCIO = 3.0,
IOH = –0.1 mA (1) VCCIO – 0.2 V
VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA (1) —0.2V
Note to Table 3–6:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
Table 3–7. 2.5-V I/O Specifications for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCIO I/O supply voltage 2.375 2.625 V
VIH High-level input voltage 1.7 4.0 V
VIL Low-level input voltage –0.5 0.7 V
VOH High-level output voltage
IOH = –0.1 mA (1) 2.1 — V
IOH = –1 mA (1) 2.0 — V
IOH = –2 mA (1) 1.7 — V
VOL Low-level output voltage
IOL = 0.1 mA (1) —0.2V
IOL = 1 mA (1) —0.4V
IOL = 2 mA (1) —0.7V
Note to Table 3–7:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
Table 3–8. 1.8-V I/O Specifications for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCIO I/O supply voltage 1.71 1.89 V
VIH High-level input voltage 0.65 × VCCIO 2.25 (2) V
VIL Low-level input voltage –0.3 0.35 × VCCIO V
VOH High-level output voltage IOH = –2 mA (1) VCCIO – 0.45 V
VOL Low-level output voltage IOL = 2 mA (1) —0.45V
Notes to Table 3–8:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter
in Table 3–2 on page 3–2.
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–7
Operating Conditions
May 2011 Altera Corporation MAX V Device Handbook
Table 3–9. 1.5-V I/O Specifications for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCIO I/O supply voltage 1.425 1.575 V
VIH High-level input voltage 0.65 × VCCIO VCCIO + 0.3 (2) V
VIL Low-level input voltage –0.3 0.35 × VCCIO V
VOH High-level output voltage IOH = –2 mA (1) 0.75 × VCCIO —V
VOL Low-level output voltage IOL = 2 mA (1) —0.25 × V
CCIO V
Notes to Table 3–9:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter
in Table 3–2 on page 3–2.
Table 3–10. 1.2-V I/O Specifications for MAX V Devices
Symbol Parameter Conditions Minimum Maximum Unit
VCCIO I/O supply voltage 1.14 1.26 V
VIH High-level input voltage 0.8 × VCCIO VCCIO +0.3 V
VIL Low-level input voltage –0.3 0.25 × VCCIO V
VOH High-level output voltage IOH = –2 mA (1) 0.75 × VCCIO —V
VOL Low-level output voltage IOL = 2 mA (1) —0.25×V
CCIO V
Note to Table 3–10:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
Table 3–11. 3.3-V PCI Specifications for MAX V Devices (Note 1)
Symbol Parameter Conditions Minimum Typical Maximum Unit
VCCIO I/O supply voltage 3.0 3.3 3.6 V
VIH High-level input voltage 0.5 × VCCIO —V
CCIO + 0.5 V
VIL Low-level input voltage 0.5 0.3 × VCCIO V
VOH High-level output voltage IOH = –500 µA 0.9 × VCCIO ——V
VOL Low-level output voltage IOL = 1.5 mA 0.1 × VCCIO V
Note to Table 3–11:
(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices.
Table 3–12. LVDS Specifications for MAX V Devices (Note 1)
Symbol Parameter Conditions Minimum Typical Maximum Unit
VCCIO I/O supply voltage 2.375 2.5 2.625 V
VOD Differential output voltage swing 247 600 mV
VOS Output offset voltage 1.125 1.25 1.375 V
Note to Table 3–12:
(1) Supports emulated LVDS output using a three-resistor network (LVDS_E_3R).
3–8 Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
MAX V Device Handbook May 2011 Altera Corporation
Bus Hold Specifications
Table 3 14 lists the bus hold specifications for the MAX V device family.
Table 3–13. RSDS Specifications for MAX V Devices (Note 1)
Symbol Parameter Conditions Minimum Typical Maximum Unit
VCCIO I/O supply voltage 2.375 2.5 2.625 V
VOD Differential output voltage swing 247 600 mV
VOS Output offset voltage 1.125 1.25 1.375 V
Note to Table 3–13:
(1) Supports emulated RSDS output using a three-resistor network (RSDS_E_3R).
Table 3–14. Bus Hold Specifications for MAX V Devices
Parameter Conditions
VCCIO Level
Unit1.2 V 1.5 V 1.8 V 2.5 V 3.3 V
Min Max Min Max Min Max Min Max Min Max
Low sustaining
current VIN > VIL (maximum) 10 20 30 50 70 µA
High sustaining
current VIN < VIH (minimum) –10 –20 –30 –50 –70 µA
Low overdrive
current 0 V < VIN < VCCIO —130—160—200—300—500µA
High overdrive
current 0 V < VIN < VCCIO — –130 — –160 — –200 — –300 — –500 µA
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–9
Operating Conditions
May 2011 Altera Corporation MAX V Device Handbook
Power-Up Timing
Table 3 15 lists the power-up timing characteristics for the MAX V device family.
Table 3–15. Power-Up Timing for MAX V Devices
Symbol Parameter Device Temperature Range Min Typ Max Unit
tCONFIG
The amount of time from
when minimum VCCINT is
reached until the device
enters user mode (1)
5M40Z Commercial and industrial 200 µs
Extended 300 µs
5M80Z Commercial and industrial 200 µs
Extended 300 µs
5M160Z Commercial and industrial 200 µs
Extended 300 µs
5M240Z (2) Commercial and industrial 200 µs
Extended 300 µs
5M240Z (3) Commercial and industrial 300 µs
Extended 400 µs
5M570Z Commercial and industrial 300 µs
Extended 400 µs
5M1270Z (4) Commercial and industrial 300 µs
Extended 400 µs
5M1270Z (5) Commercial and industrial 450 µs
Extended 500 µs
5M2210Z Commercial and industrial 450 µs
Extended 500 µs
Notes to Table 3–15:
(1) For more information about power-on reset (POR) trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter.
(2) Not applicable to the T144 package of the 5M240Z device.
(3) Only applicable to the T144 package of the 5M240Z device.
(4) Not applicable to the F324 package of the 5M1270Z device.
(5) Only applicable to the F324 package of the 5M1270Z device.
We} (may:
3–10 Chapter 3: DC and Switching Characteristics for MAX V Devices
Power Consumption
MAX V Device Handbook May 2011 Altera Corporation
Power Consumption
You can use the Altera® PowerPlay Early Power Estimator and PowerPlay Power
Analyzer to estimate the device power.
fFor more information about these power analysis tools, refer to the PowerPlay Early
Power Estimator for Altera CPLDs User Guide and the PowerPlay Power Analysis chapter
in volume 3 of the Quartus II Handbook.
Timing Model and Specifications
MAX V devices timing can be analyzed with the Altera Quartus®II software, a variety
of industry-standard EDA simulators and timing analyzers, or with the timing model
shown in Figure 3–2.
MAX V devices have predictable internal delays that allow you to determine the
worst-case timing of any design. The software provides timing simulation,
point-to-point delay prediction, and detailed timing analysis for device-wide
performance evaluation.
You can derive the timing characteristics of any signal path from the timing model
and parameters of a particular device. You can calculate external timing parameters,
which represent pin-to-pin timing delays, as the sum of the internal parameters.
fFor more information, refer to AN629: Understanding Timing in Altera CPLDs.
Figure 3–2. Timing Model for MAX V Devices
I/O Pin
I/O Input Delay
tIN
INPUT
Global Input Delay
tC4
tR4
Output
Delay
tOD
tXZ
tZX
tLOCAL
tGLOB
Logic Element
I/O Pin
tFASTIO
Output Routing
Delay
User
Flash
Memory
From Adjacent LE
To Adjacent LE
Input Routing
Delay
tDL
tLUT
tC
LUT Delay
Register Control
Delay
Register Delays
tCO
tSU
tH
tPRE
tCLR
Data-In/LUT Chain
Data-Out
tIODR
Output and Output Enable
Data Delay
tIOE
tCOMB
Combinational Path Delay
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–11
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
Preliminary and Final Timing
This section describes the performance, internal, external, and UFM timing
specifications. All specifications are representative of the worst-case supply voltage
and junction temperature conditions.
Timing models can have either preliminary or final status. The Quartus II software
issues an informational message during the design compilation if the timing models
are preliminary. Table 3–16 lists the status of the MAX V device timing models.
Preliminary status means the timing model is subject to change. Initially, timing
numbers are created using simulation results, process data, and other known
parameters. These tests are used to make the preliminary numbers as close to the
actual timing parameters as possible.
Final timing numbers are based on actual device operation and testing. These
numbers reflect the actual performance of the device under the worst-case voltage
and junction temperature conditions.
Performance
Table 3 17 lists the MAX V device performance for some common designs. All
performance values were obtained with the Quartus II software compilation of
megafunctions.
Table 3–16. Timing Model Status for MAX V Devices
Device Final
5M40Z v
5M80Z v
5M160Z v
5M240Z v
5M570Z v
5M1270Z v
5M2210Z v
Table 3–17. Device Performance for MAX V Devices (Part 1 of 2)
Resource
Used
Design Size and
Function
Resources Used
Performance
Unit
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Mode LEs UFM
Blocks C4 C5, I5 C4 C5, I5
LE
16-bit counter (1) 16 0 184.1 118.3 247.5 201.1 MHz
64-bit counter (1) 64 0 83.2 80.5 154.8 125.8 MHz
16-to-1 multiplexer 11 0 17.4 20.4 8.0 9.3 ns
32-to-1 multiplexer 24 0 12.5 25.3 9.0 11.4 ns
16-bit
XOR
function 5 0 9.0 16.1 6.6 8.2 ns
16-bit decoder with
single address line 5 0 9.2 16.1 6.6 8.2 ns
3–12 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Internal Timing Parameters
Internal timing parameters are specified on a speed grade basis independent of device
density. Table 3–18 through Table 3–25 on page 3–19 list the MAX V device internal
timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and
MultiTrack interconnects.
fFor more information about each internal timing microparameters symbol, refer to
AN629: Understanding Timing in Altera CPLDs.
UFM
512 × 16 None 3 1 10.0 10.0 10.0 10.0 MHz
512 × 16 SPI (2) 37 1 9.7 9.7 8.0 8.0 MHz
512 × 8 Parallel
(3) 73 1 (4) (4) (4) (4) MHz
512 × 16 I2C (3) 142 1 100 (5) 100 (5) 100 (5) 100 (5) kHz
Notes to Table 3–17:
(1) This design is a binary loadable up counter.
(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of logic elements (LEs) used.
(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.
(4) This design is asynchronous.
(5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line rate.
Table 3–17. Device Performance for MAX V Devices (Part 2 of 2)
Resource
Used
Design Size and
Function
Resources Used
Performance
Unit
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Mode LEs UFM
Blocks C4 C5, I5 C4 C5, I5
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 1 of 2)
Symbol Parameter
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
tLUT
LE combinational look-up
table (LUT) delay 1,215 2,247 742 914 ps
tCOMB Combinational path delay 243 309 192 236 ps
tCLR LE register clear delay 401 545 309 381 ps
tPRE LE register preset delay 401 545 309 381 ps
tSU
LE register setup time
before clock 260 321 271 333 ps
tH
LE register hold time
after clock 0 —0 —0 —0 ps
tCO
LE register
clock-to-output delay 380 494 305 376 ps
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–13
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
tCLKHL
Minimum clock high or
low time 253 339 216 266 ps
tCRegister control delay 1,356 1,741 1,114 1,372 ps
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)
Symbol Parameter
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
Table 3–19. IOE Internal Timing Microparameters for MAX V Devices
Symbol Parameter
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
tFASTIO
Data output delay from
adjacent LE to I/O block 170 428 207 254 ps
tIN
I/O input pad and buffer
delay 907 986 920 1,132 ps
tGLOB (1)
I/O input pad and buffer
delay used as global
signal pin
2,261 3,322 1,974 2,430 ps
tIOE
Internally generated
output enable delay 530 1,410 374 460 ps
tDL Input routing delay 318 509 291 358 ps
tOD (2) Output delay buffer and
pad delay 1,319 1,543 1,383 1,702 ps
tXZ (3) Output buffer disable
delay 1,045 1,276 982 1,209 ps
tZX (4) Output buffer enable
delay 1,160 1,353 1,303 1,604 ps
Notes to Table 3–19:
(1) Delay numbers for tGLOB differ for each device density and speed grade. The delay numbers for tGLOB, shown in Table 3–19, are based on a 5M240Z
device target.
(2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24
and Table 3–35 on page 3–25.
(3) For more information about tXZ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on
page 3–15 and Table 3–23 on page 3–15.
(4) For more information about tZX delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on
page 3–14 and Table 3–21 on page 3–14.
3–14 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Table 3 20 through Table 323 list the adder delays for tZX and tXZ microparameters
when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.
Table 3–20. tZX IOE Microparameter Adders for Fast Slew Rate for MAX V Devices
Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL 16 mA —0 —0 —0 —0 ps
8 mA 72 74 101 125 ps
3.3-V LVCMOS 8 mA —0 —0 —0 —0 ps
4 mA 72 74 101 125 ps
2.5-V LVTTL /
LVCMOS
14 mA 126 127 155 191 ps
7 mA 196 197 545 671 ps
1.8-V LVTTL /
LVCMOS
6 mA 608 610 721 888 ps
3 mA 681 685 2012 2477 ps
1.5-V LVCMOS 4 mA 1162 1157 1590 1957 ps
2 mA 1245 1244 3269 4024 ps
1.2-V LVCMOS 3 mA 1889 1856 2860 3520 ps
3.3-V PCI 20 mA 72 74 18 –22 ps
LVDS — 126 — 127 — 155 — 191 ps
RSDS — 126 — 127 — 155 — 191 ps
Table 3–21. tZX IOE Microparameter Adders for Slow Slew Rate for MAX V Devices
Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL 16 mA 5,951 6,063 6,012 5,743 ps
8 mA 6,534 6,662 8,785 8,516 ps
3.3-V LVCMOS 8 mA 5,951 6,063 6,012 5,743 ps
4 mA 6,534 6,662 8,785 8,516 ps
2.5-V LVTTL /
LVCMOS
14 mA 9,110 9,237 10,072 9,803 ps
7 mA 9,830 9,977 12,945 12,676 ps
1.8-V LVTTL /
LVCMOS
6 mA 21,800 21,787 21,185 20,916 ps
3 mA 23,020 23,037 24,597 24,328 ps
1.5-V LVCMOS 4 mA 39,120 39,067 34,517 34,248 ps
2 mA 40,670 40,617 39,717 39,448 ps
1.2-V LVCMOS 3 mA 69,505 70,461 55,800 55,531 ps
3.3-V PCI 20 mA 6,534 6,662 35 44 ps
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–15
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
Table 3–22. tXZ IOE Microparameter Adders for Fast Slew Rate for MAX V Devices
Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL 16 mA—0—0—0—0 ps
8 mA –69 –69 –74 –91 ps
3.3-V LVCMOS 8 mA—0—0—0—0 ps
4 mA –69 –69 –74 –91 ps
2.5-V LVTTL /
LVCMOS
14 mA –7 –10 –46 –56 ps
7 mA –66 –69 –82 –101 ps
1.8-V LVTTL /
LVCMOS
6 mA 45 37 –7 8 ps
3 mA 34 25 119 147 ps
1.5-V LVCMOS 4 mA 166 155 339 418 ps
2 mA 190 179 464 571 ps
1.2-V LVCMOS 3 mA 300 283 817 1,006 ps
3.3-V PCI 20 mA –69 –69 80 99 ps
LVDS –7 –10 — –46 — –56 ps
RSDS –7 — –10 — –46 — –56 ps
Table 3–23. tXZ IOE Microparameter Adders for Slow Slew Rate for MAX V Devices
Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL 16 mA 171 174 73 –132 ps
8 mA 112 116 758 553 ps
3.3-V LVCMOS 8 mA 171 174 73 –132 ps
4 mA 112 116 758 553 ps
2.5-V LVTTL /
LVCMOS
14 mA 213 213 32 –173 ps
7 mA 166 166 714 509 ps
1.8-V LVTTL /
LVCMOS
6 mA 441 438 96 –109 ps
3 mA 496 494 963 758 ps
1.5-V LVCMOS 4 mA 765 755 238 33 ps
2 mA 903 897 1,319 1,114 ps
1.2-V LVCMOS 3 mA 1,159 1,130 400 195 ps
3.3-V PCI 20 mA 112 116 303 373 ps
3–16 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
1The default slew rate setting for MAX V devices in the Quartus II design software is
“fast”.
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 1 of 2)
Symbol Parameter
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
tACLK
Address register clock
period 100 — 100 — 100 — 100 ns
tASU
Address register shift
signal setup to address
register clock
20—20—20—20—ns
tAH
Address register shift
signal hold to address
register clock
20—20—20—20—ns
tADS
Address register data in
setup to address register
clock
20—20—20—20—ns
tADH
Address register data in
hold from address
register clock
20—20—20—20—ns
tDCLK Data register clock period 100 100 100 100 ns
tDSS
Data register shift signal
setup to data register
clock
60—60—60—60—ns
tDSH
Data register shift signal
hold from data register
clock
20—20—20—20—ns
tDDS
Data register data in
setup to data register
clock
20—20—20—20—ns
tDDH
Data register data in hold
from data register clock 20—2020—20—ns
tDP
Program signal to data
clock hold time 0—0—0—0ns
tPB
Maximum delay between
program rising edge to
UFM
busy
signal rising
edge
— 960 — 960 — 960 — 960 ns
tBP
Minimum delay allowed
from UFM
busy
signal
going low to program
signal going low
20—20—20—20—ns
tPPMX
Maximum length of
busy
pulse during a program — 100 — 100 — 100 — 100 µs
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–17
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
tAE
Minimum
erase
signal
to address clock hold
time
0—0—0—0ns
tEB
Maximum delay between
the
erase
rising edge to
the UFM
busy
signal
rising edge
— 960 — 960 — 960 — 960 ns
tBE
Minimum delay allowed
from the UFM
busy
signal going low to
erase
signal going low
20—20—20—20—ns
tEPMX
Maximum length of
busy
pulse during an erase — 500 — 500 — 500 — 500 ms
tDCO
Delay from data register
clock to data register
output
—5—5—5—5ns
tOE
Delay from
OSC_ENA
signal reaching UFM to
rising clock of
OSC
leaving the UFM
180 — 180 — 180 — 180 ns
tRA
Maximum read access
time —65—65—65—65ns
tOSCS
Maximum delay between
the
OSC_ENA
rising edge
to the
erase/program
signal rising edge
250 — 250 — 250 — 250 ns
tOSCH
Minimum delay allowed
from the
erase/program
signal
going low to
OSC_ENA
signal going low
250 — 250 — 250 — 250 ns
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 2 of 2)
Symbol Parameter
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
p94.
3–18 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Figure 3–3 through Figure 3–5 show the read, program, and erase waveforms for
UFM block timing parameters listed in Table 3–24.
Figure 3–3. UFM Read Waveform
t
DCO
t
DCLK
t
DSS
t
DSH
t
ADH
t
ADS
t
ASU
t
ACLK
t
AH
ARShft
ARClk
ARDin
DRShft
DRClk
DRDin
DRDout
Program
Erase
Busy
16 Data Bits
9 Address Bits
OSC_ENA
Figure 3–4. UFM Program Waveform
t
ADS
t
ASU
t
ACLK
t
ADH
t
AH
t
DDS
t
DCLK
t
DSS
t
DSH
t
DDH
t
PB
t
BP
t
PPMX
t
OSCS
t
OSCH
ARShft
ARClk
ARDin
DRShft
DRClk
DRDin
DRDout
Program
Erase
Busy
16 Data Bits
9 Address Bits
OSC_ENA
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–19
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
External Timing Parameters
External timing parameters are specified by device density and speed grade. All
external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the
maximum drive strength and fast slew rate. For external I/O timing using standards
other than LVTTL or for different drive strengths, use the I/O standard input and
output delay adders in Table 3–32 on page 3–23 through Table 3–36 on page 3–25.
fFor more information about each external timing parameters symbol, refer to
AN629: Understanding Timing in Altera CPLDs.
Figure 3–5. UFM Erase Waveform
ARShft
ARClk
ARDin
DRShft
DRClk
DRDin
DRDout
Program
Erase
Busy
9 Address Bits
tASU tACLK tAH
tADH
tADS
tEB
tEPMX
tOSCS tOSCH
OSC_ENA
tBE
Table 3–25. Routing Delay Internal Timing Microparameters for MAX V Devices
Routing
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
tC4 — 860 — 1,973 — 561 — 690 ps
tR4 — 655 — 1,479 — 445 — 548 ps
tLOCAL — 1,143 — 2,947 731 899 ps
3–20 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Table 3 26 lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z,
and 5M240Z devices.
Table 3 27 lists the external I/O timing parameters for the T144 package of the
5M240Z device.
Table 3–26. Global Clock External I/O Timing Parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z Devices
(Note 1), (2)
Symbol Parameter Condition
C4 C5, I5
Unit
Min Max Min Max
tPD1 Worst case pin-to-pin delay through one LUT 10 pF 7.9 14.0 ns
tPD2 Best case pin-to-pin delay through one LUT 10 pF 5.8 8.5 ns
tSU Global clock setup time 2.4 4.6 ns
tHGlobal clock hold time 0 0 ns
tCO Global clock to output delay 10 pF 2.0 6.6 2.0 8.6 ns
tCH Global clock high time 253 339 ps
tCL Global clock low time 253 339 ps
tCNT
Minimum global clock period for
16-bit counter 5.4 8.4 — ns
fCNT
Maximum global clock frequency for 16-bit
counter — 184.1 — 118.3 MHz
Notes to Table 3–26:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Not applicable to the T144 package of the 5M240Z device.
Table 3–27. Global Clock External I/O Timing Parameters for the 5M240Z Device (Note 1), (2)
Symbol Parameter Condition
C4 C5, I5
Unit
Min Max Min Max
tPD1 Worst case pin-to-pin delay through one LUT 10 pF 9.5 17.7 ns
tPD2 Best case pin-to-pin delay through one LUT 10 pF 5.7 8.5 ns
tSU Global clock setup time 2.2 4.4 ns
tHGlobal clock hold time 0 0 ns
tCO Global clock to output delay 10 pF 2.0 6.7 2.0 8.7 ns
tCH Global clock high time 253 339 ps
tCL Global clock low time 253 339 ps
tCNT
Minimum global clock period for 16-bit
counter 5.4 8.4 — ns
fCNT
Maximum global clock frequency for 16-bit
counter — 184.1 — 118.3 MHz
Notes to Table 3–27:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Only applicable to the T144 package of the 5M240Z device.
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–21
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
Table 3 28 lists the external I/O timing parameters for the 5M570Z device.
Table 3 29 lists the external I/O timing parameters for the 5M1270Z device.
Table 3–28. Global Clock External I/O Timing Parameters for the 5M570Z Device (Note 1)
Symbol Parameter Condition
C4 C5, I5
Unit
Min Max Min Max
tPD1 Worst case pin-to-pin delay through one LUT 10 pF 9.5 17.7 ns
tPD2 Best case pin-to-pin delay through one LUT 10 pF 5.7 8.5 ns
tSU Global clock setup time 2.2 4.4 ns
tHGlobal clock hold time 0 0 ns
tCO Global clock to output delay 10 pF 2.0 6.7 2.0 8.7 ns
tCH Global clock high time 253 339 ps
tCL Global clock low time 253 339 ps
tCNT
Minimum global clock period for 16-bit
counter 5.4 8.4 — ns
fCNT
Maximum global clock frequency for 16-bit
counter — 184.1 — 118.3 MHz
Note to Table 3–28:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
Table 3–29. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)
Symbol Parameter Condition
C4 C5, I5
Unit
Min Max Min Max
tPD1 Worst case pin-to-pin delay through one LUT 10 pF 8.1 10.0 ns
tPD2 Best case pin-to-pin delay through one LUT 10 pF 4.8 5.9 ns
tSU Global clock setup time 1.5 1.9 ns
tHGlobal clock hold time 0 0 ns
tCO Global clock to output delay 10 pF 2.0 5.9 2.0 7.3 ns
tCH Global clock high time 216 266 ps
tCL Global clock low time 216 266 ps
tCNT
Minimum global clock period for 16-bit
counter 4.0 — 5.0 — ns
fCNT
Maximum global clock frequency for 16-bit
counter — 247.5 — 201.1 MHz
Notes to Table 3–29:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Not applicable to the F324 package of the 5M1270Z device.
3–22 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Table 3 30 lists the external I/O timing parameters for the F324 package of the
5M1270Z device.
Table 3 31 lists the external I/O timing parameters for the 5M2210Z device.
Table 3–30. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)
Symbol Parameter Condition
C4 C5, I5
Unit
Min Max Min Max
tPD1 Worst case pin-to-pin delay through one LUT 10 pF 9.1 11.2 ns
tPD2 Best case pin-to-pin delay through one LUT 10 pF 4.8 5.9 ns
tSU Global clock setup time 1.5 1.9 ns
tHGlobal clock hold time 0 0 ns
tCO Global clock to output delay 10 pF 2.0 6.0 2.0 7.4 ns
tCH Global clock high time 216 266 ps
tCL Global clock low time 216 266 ps
tCNT
Minimum global clock period for 16-bit
counter 4.0 — 5.0 — ns
fCNT
Maximum global clock frequency for 16-bit
counter — 247.5 — 201.1 MHz
Notes to Table 3–30:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Only applicable to the F324 package of the 5M1270Z device.
Table 3–31. Global Clock External I/O Timing Parameters for the 5M2210Z Device (Note 1)
Symbol Parameter Condition
C4 C5, I5
Unit
Min Max Min Max
tPD1 Worst case pin-to-pin delay through one LUT 10 pF 9.1 11.2 ns
tPD2 Best case pin-to-pin delay through one LUT 10 pF 4.8 5.9 ns
tSU Global clock setup time 1.5 1.9 ns
tHGlobal clock hold time 0 0 ns
tCO Global clock to output delay 10 pF 2.0 6.0 2.0 7.4 ns
tCH Global clock high time 216 266 ps
tCL Global clock low time 216 266 ps
tCNT
Minimum global clock period for 16-bit
counter 4.0 — 5.0 — ns
fCNT
Maximum global clock frequency for 16-bit
counter — 247.5 — 201.1 MHz
Note to Table 3–31:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–23
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
External Timing I/O Delay Adders
The I/O delay timing parameters for the I/O standard input and output adders and
the input delays are specified by speed grade, independent of device density.
Table 3 32 through Table 3–36 on page 3–25 list the adder delays associated with I/O
pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the
input delay adder to the external tSU timing parameters listed in Table 3–26 on
page 3–20 through Table 3–31. If you select an I/O standard other than 3.3-V LVTTL
with 16 mA drive strength and fast slew rate, add the output delay adder to the
external tCO and tPD listed in Table 3–26 on page 3–20 through Table 3 31.
Table 3–32. External Timing Input Delay Adders for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL
Without Schmitt
Trigger —0—0—0—0ps
With Schmitt
Trigger — 387 — 442 — 480 — 591 ps
3.3-V LVCMOS
Without Schmitt
Trigger —0—0—0—0ps
With Schmitt
Trigger — 387 — 442 — 480 — 591 ps
2.5-V LVTTL /
LVCMOS
Without Schmitt
Trigger — 42 — 42 — 246 303 ps
With Schmitt
Trigger — 429 — 483 — 787 — 968 ps
1.8-V LVTTL /
LVCMOS
Without Schmitt
Trigger — 378 — 368 — 695 — 855 ps
1.5-V LVCMOS Without Schmitt
Trigger — 681 — 658 — 1,334 1,642 ps
1.2-V LVCMOS Without Schmitt
Trigger — 1,055 — 1,010 — 2,324 — 2,860 ps
3.3-V PCI Without Schmitt
Trigger —0—0—0—0ps
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 1 of 2)
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL
Without Schmitt
Trigger —0—0—0—0ps
With Schmitt
Trigger — 387 — 442 — 400 — 493 ps
3–24 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
3.3-V LVCMOS
Without Schmitt
Trigger —0—0—0—0ps
With Schmitt
Trigger — 387 — 442 — 400 — 493 ps
2.5-V LVTTL /
LVCMOS
Without Schmitt
Trigger — 242 — 242 — 287 — 353 ps
With Schmitt
Trigger — 429 — 483 — 550 — 677 ps
1.8-V LVTTL /
LVCMOS
Without Schmitt
Trigger — 378 — 368 — 459 — 565 ps
1.5-V LVCMOS Without Schmitt
Trigger — 681 — 658 — 1,111 1,368 ps
1.2-V LVCMOS Without Schmitt
Trigger — 1,055 — 1,010 — 2,067 — 2,544 ps
3.3-V PCI Without Schmitt
Trigger —0—0—7—9ps
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 2 of 2)
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
Table 3–34. External Timing Output Delay and tOD Adders for Fast Slew Rate for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL 16 mA—0—0—0—0ps
8 mA 39 58 84 104 ps
3.3-V LVCMOS 8 mA—0—0—0—0ps
4 mA 39 58 84 104 ps
2.5-V LVTTL / LVCMOS 14 mA 122 129 158 195 ps
7 mA 196 188 251 309 ps
1.8-V LVTTL / LVCMOS 6 mA 624 624 738 909 ps
3 mA 686 694 850 1,046 ps
1.5-V LVCMOS 4 mA 1,188 1,184 1,376 1,694 ps
2 mA 1,279 1,280 1,517 1,867 ps
1.2-V LVCMOS 3 mA 1,911 1,883 2,206 2,715 ps
3.3-V PCI 20 mA 39 58 4 5 ps
LVDS — 122 — 129 — 158 — 195 ps
RSDS — 122 — 129 — 158 — 195 ps
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–25
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
Table 3–35. External Timing Output Delay and tOD Adders for Slow Slew Rate for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
3.3-V LVTTL 16 mA 5,913 6,043 6,612 6,293 ps
8 mA 6,488 6,645 7,313 6,994 ps
3.3-V LVCMOS 8 mA 5,913 6,043 6,612 6,293 ps
4 mA 6,488 6,645 7,313 6,994 ps
2.5-V LVTTL / LVCMOS 14 mA 9,088 9,222 10,021 9,702 ps
7 mA 9,808 9,962 10,881 10,562 ps
1.8-V LVTTL / LVCMOS 6 mA 21,758 21,782 21,134 20,815 ps
3 mA 23,028 23,032 22,399 22,080 ps
1.5-V LVCMOS 4 mA 39,068 39,032 34,499 34,180 ps
2 mA 40,578 40,542 36,281 35,962 ps
1.2-V LVCMOS 3 mA 69,332 70,257 55,796 55,477 ps
3.3-V PCI 20 mA 6,488 6,645 339 418 ps
Table 3–36. IOE Programmable Delays for MAX V Devices
Parameter
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z 5M1270Z/ 5M2210Z
Unit
C4 C5, I5 C4 C5, I5
Min Max Min Max Min Max Min Max
Input Delay from Pin to Internal
Cells = 1 — 1,858 — 2,214 — 1,592 — 1,960 ps
Input Delay from Pin to Internal
Cells = 0 — 569 — 616 — 115 — 142 ps
3–26 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Maximum Input and Output Clock Rates
Table 3 37 and Table 3–38 list the maximum input and output clock rates for standard
I/O pins in MAX V devices.
Table 3–37. Maximum Input Clock Rate for I/Os for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z Unit
C4, C5, I5
3.3-V LVTTL Without Schmitt Trigger 304 MHz
With Schmitt Trigger 304 MHz
3.3-V LVCMOS Without Schmitt Trigger 304 MHz
With Schmitt Trigger 304 MHz
2.5-V LVTTL Without Schmitt Trigger 304 MHz
With Schmitt Trigger 304 MHz
2.5-V LVCMOS Without Schmitt Trigger 304 MHz
With Schmitt Trigger 304 MHz
1.8-V LVTTL Without Schmitt Trigger 200 MHz
1.8-V LVCMOS Without Schmitt Trigger 200 MHz
1.5-V LVCMOS Without Schmitt Trigger 150 MHz
1.2-V LVCMOS Without Schmitt Trigger 120 MHz
3.3-V PCI Without Schmitt Trigger 304 MHz
Table 3–38. Maximum Output Clock Rate for I/Os for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z Unit
C4, C5, I5
3.3-V LVTTL 304 MHz
3.3-V LVCMOS 304 MHz
2.5-V LVTTL 304 MHz
2.5-V LVCMOS 304 MHz
1.8-V LVTTL 200 MHz
1.8-V LVCMOS 200 MHz
1.5-V LVCMOS 150 MHz
1.2-V LVCMOS 120 MHz
3.3-V PCI 304 MHz
LVDS 304 MHz
RSDS 200 MHz
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–27
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
LVDS and RSDS Output Timing Specifications
Table 3 39 lists the emulated LVDS output timing specifications for MAX V devices.
Table 3–39. Emulated LVDS Output Timing Specifications for MAX V Devices
Parameter Mode
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z Unit
C4, C5, I5
Min Max
Data rate (1), (2)
10 304 Mbps
9 304 Mbps
8 304 Mbps
7 304 Mbps
6 304 Mbps
5 304 Mbps
4 304 Mbps
3 304 Mbps
2 304 Mbps
1 304 Mbps
tDUTY —4555%
Total jitter (3) ——0.2UI
tRISE ——450ps
tFALL ——450ps
Notes to Table 3–39:
(1) The performance of the LVDS_E_3R transmitter system is limited by the lower of the two—the maximum data rate supported by LVDS_E_3R
I/O buffer or 2x (FMAX of the ALTLVDS_TX instance). The actual performance of your LVDS_E_3R transmitter system must be attained through
the Quartus II timing analysis of the complete design.
(2) For the input clock pin to achieve 304 Mbps, use I/O standard with VCCIO of 2.5 V and above.
(3) This specification is based on external clean clock source.
3–28 Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
MAX V Device Handbook May 2011 Altera Corporation
Table 3 40 lists the emulated RSDS output timing specifications for MAX V devices.
Table 3–40. Emulated RSDS Output Timing Specifications for MAX V Devices
Parameter Mode
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z
Unit
C4, C5, I5
Min Max
Data rate (1)
10 200 Mbps
9 200 Mbps
8 200 Mbps
7 200 Mbps
6 200 Mbps
5 200 Mbps
4 200 Mbps
3 200 Mbps
2 200 Mbps
1 200 Mbps
tDUTY —4555%
Total jitter (2) ——0.2UI
tRISE ——450ps
tFALL ——450ps
Notes to Table 3–40:
(1) For the input clock pin to achieve 200 Mbps, use I/O standard with VCCIO of 1.8 V and above.
(2) This specification is based on external clean clock source.
J .
Chapter 3: DC and Switching Characteristics for MAX V Devices 3–29
Timing Model and Specifications
May 2011 Altera Corporation MAX V Device Handbook
JTAG Timing Specifications
Figure 3–6 shows the timing waveform for the JTAG signals for the MAX V device
family.
Table 3 41 lists the JTAG timing parameters and values for the MAX V device family.
Figure 3–6. JTAG Timing Waveform for MAX V Devices
TDI
TMS
TDO
TCK
Signal
to be
Captured
Signal
to be
Driven
tJCP
tJCH tJCL
tJPSU tJPH
tJPCO tJPXZ
tJPZX
tJSSU tJSH
tJSZX tJSCO tJSXZ
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 1 of 2)
Symbol Parameter Min Max Unit
tJCP (1)
TCK
clock period for VCCIO1 = 3.3 V 55.5 ns
TCK
clock period for VCCIO1 = 2.5 V 62.5 ns
TCK
clock period for VCCIO1 = 1.8 V 100 ns
TCK
clock period for VCCIO1 = 1.5 V 143 ns
tJCH
TCK
clock high time 20 ns
tJCL
TCK
clock low time 20 ns
tJPSU JTAG port setup time (2) 8—ns
tJPH JTAG port hold time 10 ns
tJPCO JTAG port clock to output (2) —15ns
tJPZX JTAG port high impedance to valid output (2) —15ns
tJPXZ JTAG port valid output to high impedance (2) —15ns
tJSSU Capture register setup time 8 ns
tJSH Capture register hold time 10 ns
tJSCO Update register clock to output 25 ns
tJSZX Update register high impedance to valid output 25 ns
3–30 Chapter 3: DC and Switching Characteristics for MAX V Devices
Document Revision History
MAX V Device Handbook May 2011 Altera Corporation
Document Revision History
Table 3 42 lists the revision history for this chapter.
tJSXZ Update register valid output to high impedance 25 ns
Notes to Table 3–41:
(1) Minimum clock period specified for 10 pF load on the
TDO
pin. Larger loads on
TDO
degrades the maximum
TCK
frequency.
(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and
1.5-V LVCMOS operation, the tJPSU minimum is 6 ns and tJPCO, tJPZX, and tJPXZ are maximum values at 35 ns.
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 2 of 2)
Symbol Parameter Min Max Unit
Table 3–42. Document Revision History
Date Version Changes
May 2011 1.2 Updated Table 32, Table 3–15, Table 3–16, and Table 3–33.
January 2011 1.1 Updated Table 3–37, Table 3–38, Table 3–39, and Table 3–40.
December 2010 1.0 Initial release.

Products related to this Datasheet

IC CPLD 32MC 7.5NS 64EQFP
IC CPLD 32MC 7.5NS 64EQFP
IC CPLD 128MC 7.5NS 64EQFP
IC CPLD 64MC 7.5NS 100TQFP
IC CPLD 440MC 9NS 100TQFP
IC CPLD 192MC 7.5NS 144TQFP
IC CPLD 192MC 7.5NS 68MBGA
IC CPLD 64MC 7.5NS 68MBGA
IC CPLD 192MC 7.5NS 100TQFP
IC CPLD 440MC 9NS 100TQFP
IC CPLD 64MC 7.5NS 64EQFP
IC CPLD 64MC 7.5NS 100TQFP
IC CPLD 192MC 7.5NS 100TQFP
IC CPLD 128MC 7.5NS 100TQFP
IC CPLD 64MC 7.5NS 64EQFP
IC CPLD 440MC 9NS 100MBGA
IC CPLD 128MC 7.5NS 100TQFP
IC CPLD 192MC 7.5NS 100MBGA
IC CPLD 128MC 7.5NS 64EQFP
IC CPLD 128MC 7.5NS 64EQFP
IC CPLD 440MC 9NS 100MBGA
IC CPLD 980MC 6.2NS 256FBGA
IC CPLD 980MC 6.2NS 144TQFP
IC CPLD 980MC 6.2NS 144TQFP
IC CPLD 64MC 7.5NS 64EQFP
IC CPLD 1700MC 7NS 256FBGA
IC CPLD 440MC 9NS 256FBGA
IC CPLD 128MC 7.5NS 100MBGA
IC CPLD 32MC 7.5NS 64MBGA
IC CPLD 192MC 7.5NS 68MBGA