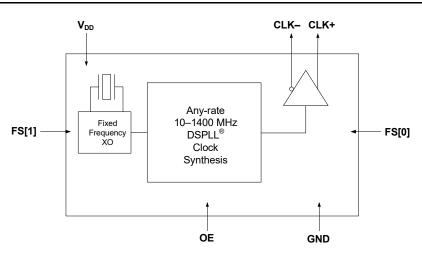


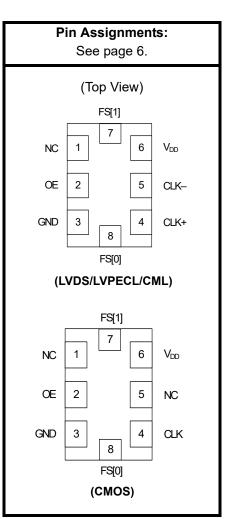
Si534 REVISION D

# QUAD FREQUENCY CRYSTAL OSCILLATOR (XO) (10 MHz to 1.4 GHz)

#### Features


- Available with any-rate output frequencies from 10 MHz to 945 MHz and select frequencies to 1.4 GHz
- Four selectable output frequencies
- 3rd generation DSPLL<sup>®</sup> with superior jitter performance
- 3x better frequency stability than SAW-based oscillators
- Applications
- SONET/SDH
- Networking
- SD/HD video

### Description


- Internal fixed crystal frequency ensures high reliability and low aging
   Available CMOS, LVPECL.
- LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm
- package and pinout
- Pb-free/RoHS-compliant
- Test and measurement
- Clock and data recovery
- FPGA/ASIC clock generation

The Si534 quad frequency XO utilizes Silicon Laboratories' advanced DSPLL<sup>®</sup> circuitry to provide a low jitter clock at high frequencies. The Si534 is available with any-rate output frequency from 10 to 945 MHz and select frequencies to 1400 MHz. Unlike a traditional XO where a different crystal is required for each output frequency, the Si534 uses one fixed crystal to provide a wide range of output frequencies. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides superior supply noise rejection, simplifying the task of generating low jitter clocks in noisy environments typically found in communication systems. The Si534 IC-based XO is factory configurable for a wide variety of user specifications including frequency, supply voltage, output format, and temperature stability. Specific configurations are factory programmed at time of shipment, thereby eliminating long lead times associated with custom oscillators.

## Functional Block Diagram







## 1. Electrical Specifications

## **Table 1. Recommended Operating Conditions**

| Symbol          | Test Condition                                                   | Min                                                                                                                                                                                                                    | Тур                                                                                                                                                                                                                                                                                                                                         | Мах                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD</sub> | 3.3 V option                                                     | 2.97                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                                                                                                                                         | 3.63                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 2.5 V option                                                     | 2.25                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                         | 2.75                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 1.8 V option                                                     | 1.71                                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                                                                                                                                                         | 1.89                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I <sub>DD</sub> | Output enabled<br>LVPECL<br>CML<br>LVDS<br>CMOS<br>Tristate mode | <br>                                                                                                                                                                                                                   | 111<br>99<br>90<br>81<br>60                                                                                                                                                                                                                                                                                                                 | 121<br>108<br>98<br>88<br>75                                                                                                                                                                                                                                                                                                                                                                      | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | V <sub>IH</sub>                                                  | 0.75 x V <sub>DD</sub>                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                           | - 0.5                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T <sub>A</sub>  | ▼IL                                                              | -40                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                           | 85                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | V <sub>DD</sub>                                                  | V <sub>DD</sub> 3.3 V option       2.5 V option     1.8 V option       I <sub>DD</sub> Output enabled       LVPECL     CML       LVDS     CMOS       Tristate mode     V <sub>IH</sub> V <sub>IL</sub> V <sub>IL</sub> | V <sub>DD</sub> 3.3 V option         2.97           2.5 V option         2.25           1.8 V option         1.71           I <sub>DD</sub> Output enabled<br>LVPECL         —           CML         —           LVDS         —           CMOS         —           Tristate mode         —           V <sub>IH</sub> 0.75 x V <sub>DD</sub> | V <sub>DD</sub> 3.3 V option         2.97         3.3           2.5 V option         2.25         2.5           1.8 V option         1.71         1.8           I <sub>DD</sub> Output enabled<br>LVPECL         —         111<br>CML         —         99<br>LVDS         90<br>CMOS         81           Tristate mode         —         60            V <sub>IH</sub> 0.75 x V <sub>DD</sub> — | V <sub>DD</sub> 3.3 V option         2.97         3.3         3.63           2.5 V option         2.25         2.5         2.75           1.8 V option         1.71         1.8         1.89           IDD         Output enabled         —         111         121           LVPECL         —         111         121           CML         —         99         108           LVDS         —         90         98           CMOS         —         81         88           Tristate mode         —         60         75           V <sub>IL</sub> —         —         0.5 |

Notes

1. Selectable parameter specified by part number. See Section 3. "Ordering Information" on page 7 for further details.

2. OE and FS[1:0] pins include a 17 k $\Omega$  pullup resistor to V<sub>DD</sub>.

## Table 2. CLK± Output Frequency Characteristics

| Parameter                            | Symbol         | Test Condition                         | Min           | Тур  | Мах              | Units |
|--------------------------------------|----------------|----------------------------------------|---------------|------|------------------|-------|
| Nominal Frequency <sup>1,2</sup>     | f <sub>O</sub> | LVPECL/LVDS/CML                        | 10            |      | 945              | MHz   |
|                                      |                | CMOS                                   | 10            | _    | 160              | MHz   |
| Initial Accuracy                     | f <sub>i</sub> | Measured at +25 °C at time of shipping | _             | ±1.5 | _                | ppm   |
| Temperature Stability <sup>1,3</sup> |                |                                        | 7<br>20<br>50 |      | +7<br>+20<br>+50 | ppm   |
| Aging                                | f              | Frequency drift over first year        |               |      | ±3               | ppm   |
|                                      | f <sub>a</sub> | Frequency drift over 20-year life      |               | —    | ±10              | ppm   |
| Total Stability                      |                | Temp stability = ±7 ppm                | —             | _    | ±20              | ppm   |
|                                      |                | Temp stability = ±20 ppm               |               |      | ±31.5            | ppm   |
|                                      |                | Temp stability = ±50 ppm               |               | _    | ±61.5            | ppm   |

Notes:

1. See Section 3. "Ordering Information" on page 7 for further details.

2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.

3. Selectable parameter specified by part number.

4. Time from powerup or tristate mode to f<sub>O</sub>.



 Table 2. CLK± Output Frequency Characteristics (Continued)

| Parameter                                                                                                                                                                                                                                                                                              | Symbol           | Test Condition | Min | Тур | Мах | Units |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----|-----|-----|-------|--|
| Powerup Time <sup>4</sup>                                                                                                                                                                                                                                                                              | t <sub>osc</sub> |                |     |     | 10  | ms    |  |
| Settling Time After FS[1:0]<br>Change                                                                                                                                                                                                                                                                  |                  |                | _   |     | 20  | ms    |  |
| <ul> <li>Notes:</li> <li>1. See Section 3. "Ordering Information" on page 7 for further details.</li> <li>2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.</li> <li>3. Selectable parameter specified by part number.</li> </ul> |                  |                |     |     |     |       |  |

**4.** Time from powerup or tristate mode to  $f_0$ .

| Symbol                         | Test Condition                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Мах                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Vo                             | mi                                                                                                                                                                                    | d-level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>DD</sub> – 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>DD</sub> – 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                      |
| V <sub>OD</sub>                | swi                                                                                                                                                                                   | swing (diff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{PP}$                                               |
| $V_{SE}$                       | swing (s                                                                                                                                                                              | swing (single-ended)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{PP}$                                               |
| V <sub>O</sub>                 | m                                                                                                                                                                                     | mid-level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                      |
| V <sub>OD</sub>                | swi                                                                                                                                                                                   | swing (diff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{PP}$                                               |
| V                              | 2.5/3.3 V c                                                                                                                                                                           | 2.5/3.3 V option mid-level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>DD</sub> – 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                      |
| vo                             | 1.8 V option mid-level                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>DD</sub> – 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                      |
| M                              | 2.5/3.3 V option swing (diff)                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{PP}$                                               |
| VOD                            | 1.8 V option swing (diff)                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{PP}$                                               |
| V <sub>OH</sub>                | I <sub>ОН</sub>                                                                                                                                                                       | = 32 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8 x V <sub>DD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>DD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                      |
| V <sub>OL</sub>                | I <sub>OL</sub>                                                                                                                                                                       | = 32 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                      |
| t <sub>R,</sub> t <sub>F</sub> | LVPECI                                                                                                                                                                                | _/LVDS/CML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ps                                                     |
|                                | CMOS w                                                                                                                                                                                | ith C <sub>L</sub> = 15 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns                                                     |
| SYM                            | LVPECL:<br>(diff)<br>LVDS:<br>CMOS:                                                                                                                                                   | V <sub>DD</sub> – 1.3 V<br>1.25 V (diff)<br>V <sub>DD</sub> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                      |
|                                | V <sub>OD</sub><br>V <sub>SE</sub><br>V <sub>O</sub><br>V <sub>OD</sub><br>V <sub>OD</sub><br>V <sub>OD</sub><br>V <sub>OH</sub><br>V <sub>OL</sub><br>t <sub>R,</sub> t <sub>F</sub> | $\begin{tabular}{ c c c c } \hline V_O & mi \\ \hline V_{OD} & swing (s) \\ \hline V_{SE} & swing (s) \\ \hline V_O & mi \\ \hline V_{OD} & swing (s) \\ \hline V_{OD} & swing (s) \\ \hline V_{OD} & swing (s) \\ \hline V_{OD} & 1.8 \mbox{ V op} \\ \hline 0.1 \mbox{ V op} $ | $\begin{tabular}{ c c c c } \hline V_O & mid-level \\ \hline V_{OD} & swing (diff) \\ \hline V_{SE} & swing (single-ended) \\ \hline V_O & mid-level \\ \hline V_{OD} & swing (diff) \\ \hline V_O & swing (diff) \\ \hline V_O & 1.8 V option mid-level \\ \hline 1.8 V option swing (diff) \\ \hline V_{OD} & 1.8 V option swing (diff) \\ \hline V_{OD} & 1.8 V option swing (diff) \\ \hline V_{OD} & 1.8 V option swing (diff) \\ \hline V_{OH} & I_{OH} = 32 mA \\ \hline V_{OL} & I_{OL} = 32 mA \\ \hline V_{R}, t_F & LVPECL/LVDS/CML \\ \hline CMOS with C_L = 15 pF \\ \hline SYM & LVPECL: V_{DD} - 1.3 V \\ (diff) \\ LVDS: & 1.25 V (diff) \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c c } \hline V_O & mid-level & V_{DD} - 1.42 \\ \hline V_{OD} & swing (diff) & 1.1 \\ \hline V_{SE} & swing (single-ended) & 0.55 \\ \hline V_O & mid-level & 1.125 \\ \hline V_{OD} & swing (diff) & 0.5 \\ \hline V_O & swing (diff) & 0.5 \\ \hline V_O & 2.5/3.3 \ V \ option \ mid-level & \\ \hline 1.8 \ V \ option \ mid-level & \\ \hline 1.8 \ V \ option \ swing (diff) & 1.10 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 \\ \hline 1.8 \ V \ option \ swing (diff) & 0.35 \\ \hline V_{OH} & I_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} \\ \hline V_{OL} & I_{OL} = 32 \ mA & \\ \hline t_{R}, t_{F} & LVPECL/LVDS/CML & \\ \hline CMOS \ with \ C_L = 15 \ pF & \\ \hline SYM & LVPECL: \ \ V_{DD} - 1.3 \ V \\ (diff) \\ LVDS: & 1.25 \ V \ (diff) \\ \hline 45 \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c c c } \hline V_{O} & mid-level & V_{DD} - 1.42 & \\ \hline V_{OD} & swing (diff) & 1.1 & \\ \hline V_{SE} & swing (single-ended) & 0.55 & \\ \hline V_{O} & mid-level & 1.125 & 1.20 \\ \hline V_{OD} & swing (diff) & 0.5 & 0.7 \\ \hline V_{OD} & swing (diff) & 0.5 & 0.7 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level & & V_{DD} - 1.30 \\ \hline V_{OD} & 1.8 \ V \ option \ mid-level & & V_{DD} - 0.36 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 & 1.50 \\ \hline 1.8 \ V \ option \ swing (diff) & 0.35 & 0.425 \\ \hline V_{OD} & 1.8 \ V \ option \ swing (diff) & 0.35 & 0.425 \\ \hline V_{OD} & 1.8 \ V \ option \ swing (diff) & 0.35 & 0.425 \\ \hline V_{OL} & 1_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} & \\ \hline V_{OL} & 1_{OL} = 32 \ mA & & \\ \hline CMOS \ with \ C_L = 15 \ pF & & 1 \\ \hline SYM & LVPECL: \ V_{DD} - 1.3 \ V \\ (diff) \\ LVDS: \ 1.25 \ V \ (diff) & 45 & \\ \hline \end{tabular}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

**2.** R<sub>term</sub> = 100 Ω (differential). **3.** C<sub>L</sub> = 15 pF



## Table 4. CLK± Output Phase Jitter

| Parameter                                                 | Symbol | Test Condition                         | Min | Тур  | Max  | Units |
|-----------------------------------------------------------|--------|----------------------------------------|-----|------|------|-------|
| Phase Jitter (RMS) <sup>1</sup>                           | фJ     | 12 kHz to 20 MHz (OC-48)               | _   | 0.25 | 0.40 | ps    |
| for F <sub>OUT</sub> ≥ 500 MHz                            |        | 50 kHz to 80 MHz (OC-192)              | _   | 0.26 | 0.37 | ps    |
| Phase Jitter (RMS) <sup>1</sup>                           | φJ     | 12 kHz to 20 MHz (OC-48)               | _   | 0.36 | 0.50 | ps    |
| for F <sub>OUT</sub> of 125 to 500 MHz                    |        | 50 kHz to 80 MHz (OC-192) <sup>2</sup> | _   | 0.34 | 0.42 | ps    |
| Phase Jitter (RMS)                                        | φJ     | 12 kHz to 20 MHz (OC-48) <sup>2</sup>  | _   | 0.62 | _    | ps    |
| for F <sub>OUT</sub> of 10 to 160 MHz<br>CMOS Output Only |        | 50 kHz to 20 MHz <sup>2</sup>          | _   | 0.61 |      | ps    |
| Notes:                                                    |        | -                                      | •   | •    | •    |       |

Notes:

**1.** Refer to AN256 for further information.

2. Max offset frequencies: 80 MHz for FOUT  $\geq$  250 MHz, 20 MHz for 50 MHz  $\leq$  FOUT <250 MHz,

2 MHz for 10 MHz <u><</u> FOUT <50 MHz.

## Table 5. CLK± Output Period Jitter

| Parameter                                                                                                           | Symbol           | Test Condition | Min | Тур | Мах | Units |  |
|---------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----|-----|-----|-------|--|
| Period Jitter*                                                                                                      | J <sub>PER</sub> | RMS            |     | 2   |     | ps    |  |
|                                                                                                                     |                  | Peak-to-Peak   |     | 14  | _   | ps    |  |
| *Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information. |                  |                |     |     |     |       |  |

## Table 6. CLK± Output Phase Noise (Typical)

| Offset Frequency (f) | 120.00 MHz<br>LVDS | 156.25 MHz<br>LVPECL | 622.08 MHz<br>LVPECL | Units  |
|----------------------|--------------------|----------------------|----------------------|--------|
| 100 Hz               | -112               | -105                 | -97                  |        |
| 1 kHz                | -122               | -122                 | -107                 |        |
| 10 kHz               | -132               | -128                 | -116                 |        |
| 100 kHz              | -137               | -135                 | -121                 | dBc/Hz |
| 1 MHz                | -144               | -144                 | -134                 |        |
| 10 MHz               | -150               | -147                 | -146                 |        |
| 100 MHz              | n/a                | n/a                  | -148                 |        |



## Table 7. Environmental Compliance

The Si534 meets the following qualification test requirements.

| Parameter                  | Conditions/Test Method   |
|----------------------------|--------------------------|
| Mechanical Shock           | MIL-STD-883, Method 2002 |
| Mechanical Vibration       | MIL-STD-883, Method 2007 |
| Solderability              | MIL-STD-883, Method 2003 |
| Gross & Fine Leak          | MIL-STD-883, Method 1014 |
| Resistance to Solder Heat  | MIL-STD-883, Method 2036 |
| Moisture Sensitivity Level | J-STD_020, MSL1          |
| Contact Pads               | Gold over Nickel         |

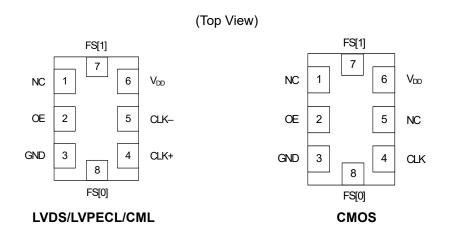
#### Table 8. Thermal Characteristics

(Typical values TA = 25 °C,  $V_{DD}$  = 3.3 V)

| Parameter                              | Symbol         | Test Condition | Min | Тур  | Max | Unit |
|----------------------------------------|----------------|----------------|-----|------|-----|------|
| Thermal Resistance Junction to Ambient | $\theta_{JA}$  | Still Air      | —   | 84.6 | _   | °C/W |
| Thermal Resistance Junction to Case    | $\theta_{JC}$  | Still Air      | —   | 38.8 | _   | °C/W |
| Ambient Temperature                    | Τ <sub>Α</sub> |                | -40 | _    | 85  | °C   |
| Junction Temperature                   | Τ <sub>J</sub> |                | _   |      | 125 | °C   |

## Table 9. Absolute Maximum Ratings<sup>1</sup>

| Parameter                                                                     | Symbol            | Rating                        | Units   |
|-------------------------------------------------------------------------------|-------------------|-------------------------------|---------|
| Maximum Operating Temperature                                                 | T <sub>AMAX</sub> | 85                            | °C      |
| Supply Voltage, 1.8 V Option                                                  | V <sub>DD</sub>   | -0.5 to +1.9                  | V       |
| Supply Voltage, 2.5/3.3 V Option                                              | V <sub>DD</sub>   | -0.5 to +3.8                  | V       |
| Input Voltage (any input pin)                                                 | VI                | –0.5 to V <sub>DD</sub> + 0.3 | V       |
| Storage Temperature                                                           | Τ <sub>S</sub>    | -55 to +125                   | °C      |
| ESD Sensitivity (HBM, per JESD22-A114)                                        | ESD               | 2000                          | V       |
| Soldering Temperature (Pb-free profile) <sup>2</sup>                          | T <sub>PEAK</sub> | 260                           | °C      |
| Soldering Temperature Time @ T <sub>PEAK</sub> (Pb-free profile) <sup>2</sup> | t <sub>P</sub>    | 20–40                         | seconds |


Notes:

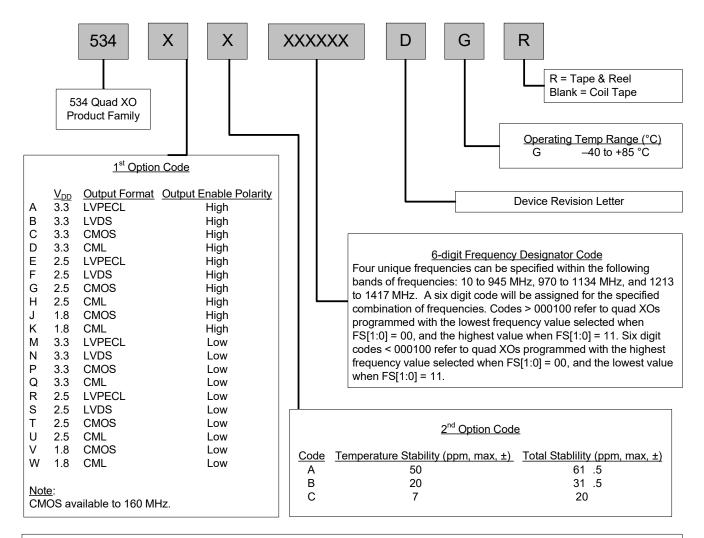
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at www.silabs.com/VCXO for further information, including soldering profiles.



# 2. Pin Descriptions




## Table 10. Pin Descriptions

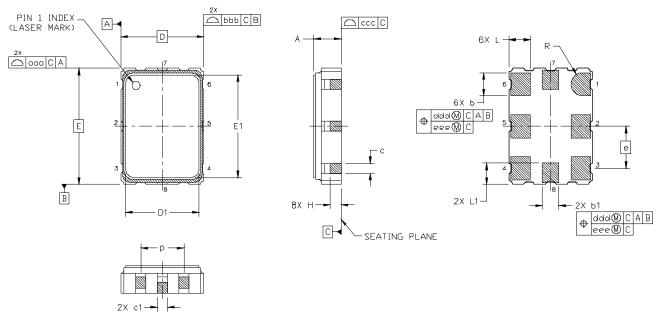
| Pin   | Symbol                                                                                                                                                              | LVDS/LVPECL/CML Function                                                                   | CMOS Function                                                                              |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| 1     | NC                                                                                                                                                                  | No connection                                                                              | No connection                                                                              |  |  |  |  |
| 2     | OE*                                                                                                                                                                 | Output enable<br>0 = clock output disabled (outputs tristated)<br>1 = clock output enabled | Output enable<br>0 = clock output disabled (outputs tristated)<br>1 = clock output enabled |  |  |  |  |
| 3     | GND                                                                                                                                                                 | Electrical and Case Ground                                                                 | Electrical and Case Ground                                                                 |  |  |  |  |
| 4     | CLK+                                                                                                                                                                | Oscillator Output                                                                          | Oscillator Output                                                                          |  |  |  |  |
| 5     | CLK–                                                                                                                                                                | Complementary Output                                                                       | No connection                                                                              |  |  |  |  |
| 6     | V <sub>DD</sub>                                                                                                                                                     | Power Supply Voltage                                                                       | Power Supply Voltage                                                                       |  |  |  |  |
| 7     | FS[1]*                                                                                                                                                              | Frequency Select MSB                                                                       | Frequency Select MSB                                                                       |  |  |  |  |
| 8     | FS[0]*                                                                                                                                                              | Frequency Select LSB                                                                       | Frequency Select LSB                                                                       |  |  |  |  |
| *Note | *Note: FS[1:0] and OE include a 17 kΩ pullup resistor to V <sub>DD</sub> . See Section 3. "Ordering Information" on page 7 for details on frequency value ordering. |                                                                                            |                                                                                            |  |  |  |  |



## 3. Ordering Information

The Si534 XO supports a variety of options including frequency, temperature stability, output format, and  $V_{DD}$ . Specific device configurations are programmed into the Si534 at time of shipment. Configurations can be specified using the Part Number Configuration chart below. Silicon Laboratories provides a web browser-based part number configuration utility to simplify this process. Refer to www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si534 is supplied in an industry-standard, RoHS compliant, 6-pad, 5 x 7 mm package.




Example Part Number: 534AB000108DGR is a 5 x 7 mm quad XO in a 8 pad package. Since the six digit code (000108) is > 000100, f0 is 644.53125 MHz (lower frequency) and f1 is 693.48299 (higher frequency), with a 3.3 V supply, LVPECL output, and Output Enable active high polarity. Temperature stability is specified as  $\pm 20$  ppm. The part is specified for a -40 to +85 C° ambient temperature range operation and is shipped in tape and reel format.


### Figure 1. Part Number Convention



## 4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si534. Table 11 lists the values for the dimensions shown in the illustration.





## Table 11. Package Diagram Dimensions (mm)

| Dimension | Min      | Nom  | Мах  |
|-----------|----------|------|------|
| А         | 1.50     | 1.65 | 1.80 |
| b         | 1.30     | 1.40 | 1.50 |
| b1        | 0.90     | 1.00 | 1.10 |
| С         | 0.50     | 0.60 | 0.70 |
| c1        | 0.30     |      | 0.60 |
| D         | 5.00 BSC |      |      |
| D1        | 4.30     | 4.40 | 4.50 |
| е         | 2.54 BSC |      |      |
| E         | 7.00 BSC |      |      |
| E1        | 6.10     | 6.20 | 6.30 |
| Н         | 0.55     | 0.65 | 0.75 |
| L         | 1.17     | 1.27 | 1.37 |
| L1        | 1.07     | 1.17 | 1.27 |
| р         | 1.80     |      | 2.60 |
| R         | 0.70 REF |      |      |
| aaa       | —        | —    | 0.15 |
| bbb       | —        | _    | 0.15 |
| CCC       | _        | —    | 0.10 |
| ddd       | —        | —    | 0.10 |
| eee       | —        | _    | 0.05 |



## 5. Si534 Mark Specification

Figure 3 illustrates the mark specification for the Si534. Table 12 lists the line information.

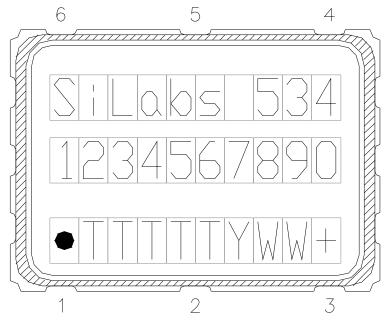
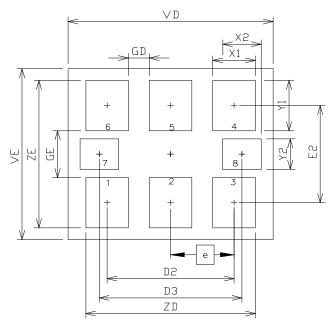



Figure 3. Mark Specification


Table 12. Si53x Top Mark Description

| Line | Position                                                            | Description                                                                                                                                            |  |  |
|------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | 1–10                                                                | "SiLabs 534"                                                                                                                                           |  |  |
| 2    | 1–10                                                                | Si530, Si531: Option1 + Option2 + Freq(7) + Temp<br>Si532, Si533, Si534, Si530/Si531 w/ 8-digit resolution:<br>Option1 + Option2 + ConfigNum(6) + Temp |  |  |
| 3    | Trace Code                                                          |                                                                                                                                                        |  |  |
|      | Position 1                                                          | Pin 1 orientation mark (dot)                                                                                                                           |  |  |
|      | Position 2                                                          | Product Revision (D)                                                                                                                                   |  |  |
|      | Position 3–6 Tiny Trace Code (4 alphanumeric characters per assembl |                                                                                                                                                        |  |  |
|      | Position 7                                                          | Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)                                                                    |  |  |
|      | Position 8–9                                                        | Calendar Work Week number (1–53), to be assigned by assembly site                                                                                      |  |  |
|      | Position 10                                                         | "+" to indicate Pb-Free and RoHS-compliant                                                                                                             |  |  |



## 6. 8-Pin PCB Land Pattern

Figure 4 illustrates the 8-pin PCB land pattern for the Si554. Table 13 lists the values for the dimensions shown in the illustration.





#### Table 13. PCB Land Pattern Dimensions (mm)

| Dimension | Min       | Max  |  |
|-----------|-----------|------|--|
| D2        | 5.08 REF  |      |  |
| D3        | 5.705 REF |      |  |
| е         | 2.54 BSC  |      |  |
| E2        | 4.20 REF  |      |  |
| GD        | 0.84      | —    |  |
| GE        | 2.00      | —    |  |
| VD        | 8.20 REF  |      |  |
| VE        | 7.30 REF  |      |  |
| X1        | 1.70 TYP  |      |  |
| X2        | 1.545 TYP |      |  |
| Y1        | 2.15 REF  |      |  |
| Y2        | 1.3 REF   |      |  |
| ZD        | —         | 6.78 |  |
| ZE        | —         | 6.30 |  |
|           |           |      |  |

#### Note:

- **1.** Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.
- 2. Land pattern design follows IPC-7351 guidelines.
- **3.** All dimensions shown are at maximum material condition (MMC).
- 4. Controlling dimension is in millimeters (mm).



## **DOCUMENT CHANGE LIST**

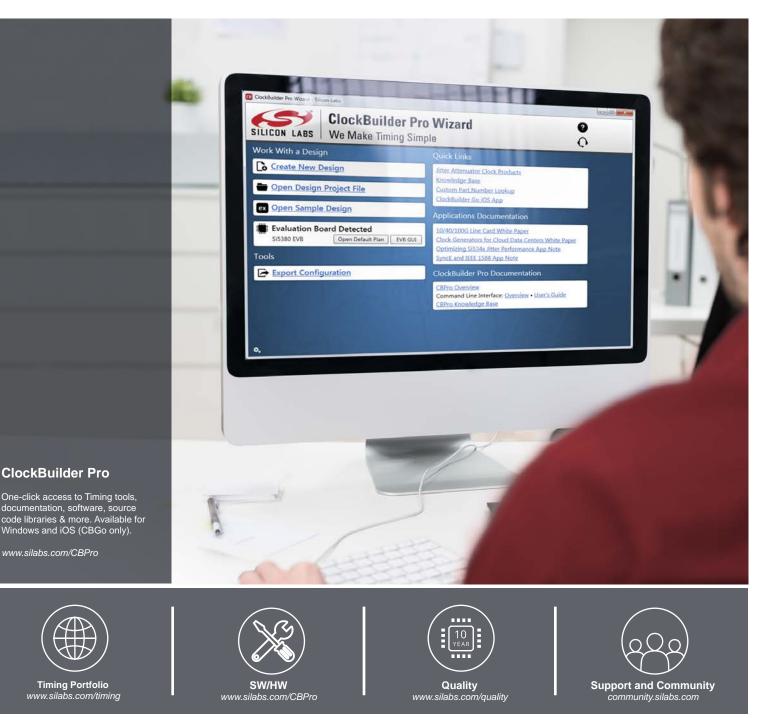
## **Revision 1.0 to Revision 1.1**

- Updated Table 1, "Recommended Operating Conditions," on page 2.
  - Device maintains stable operation over -40 to +85 °C operating temperature range.
  - Supply current specifications updated for revision D.
- Updated Table 2, "CLK± Output Frequency Characteristics," on page 2.
  - Added specification for ±20 ppm lifetime stability (±7 ppm temperature stability) XO.
- Updated Table 3, "CLK± Output Levels and Symmetry," on page 3.
  - Updated LVDS differential peak-peak swing specifications.
- Updated Table 4, "CLK± Output Phase Jitter," on page 4.
- Updated Table 5, "CLK± Output Period Jitter," on page 4.
  - Revised period jitter specifications.
- Updated Table 9, "Absolute Maximum Ratings<sup>1</sup>," on page 5 to reflect the soldering temperature time at 260 °C is 20–40 sec per JEDEC J-STD-020C.
- Updated 3. "Ordering Information" on page 7.
   Changed ordering instructions to revision D.
- Added 5. "Si534 Mark Specification" on page 9.

## **Revision 1.1 to Revision 1.2**

- Updated 2.5 V/3.3 V and 1.8 V CML output level specifications for Table 3 on page 3.
- Added footnotes clarifying max offset frequency test conditions for Table 4 on page 4.
- Removed the words "Differential Modes: LVPECL/LVDS/CML" in the footnote referring to AN256 in Table 4 on page 4.
- Added CMOS phase jitter specs to Table 4 on page 4.
- Updated ESD HBM sensitivity rating in Table 9 on page 5.
- Updated Table 7 on page 5 to include the "Moisture Sensitivity Level" and "Contact Pads" rows.
- Revised Figure 2 on page 8 to reflect current package outline diagram.
- Updated Figure 3 and Table 12 on page 9 to reflect specific marking information. Previously, Figure 3 was generic.

## **Revision 1.2 to Revision 1.3**


 Added Table 8, "Thermal Characteristics," on page 5.



## **Revision 1.3 to Revision 1.4**

### June, 2018

 Changed "Trays" to "Coil Tape" in section 3."Ordering Information".



#### Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific attracter personal injury or death. Silicon Labs products are not designed or authorized to be used within any FDA Class III devices, applications. Silicon Labs product shall have no Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized are not designed or authorized for authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of

#### **Trademark Information**

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadio®, Ogecko®, Gecko OS, Gecko OS, Gecko OS, Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

## http://www.silabs.com