Si8650,51,52,55 Datasheet by Silicon Labs

View All Related Products | Download PDF Datasheet
7 E SILICEIN LABS
Si8650/51/52/55 Data Sheet
Low Power Five-Channel Digital Isolator
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-
tages over legacy isolation technologies. The operating parameters of these products
remain stable across wide temperature ranges and throughout device service life for
ease of design and highly uniform performance. All device versions have Schmitt trigger
inputs for high noise immunity and only require VDD bypass capacitors.
Data rates up to 150 Mbps are supported, and all devices achieve propagation delays of
less than 10 ns. Enable inputs provide a single point control for enabling and disabling
output drive. Ordering options include a choice of isolation ratings (1.0, 2.5, 3.75 and 5
kV) and a selectable fail-safe operating mode to control the default output state during
power loss. All products >1 kVRMS are safety certified by UL, CSA, VDE, and CQC, and
products in wide-body packages support reinforced insulation withstanding up to 5
kVRMS.
Automotive Grade is available for certain part numbers. These products are built using
automotive-specific flows at all steps in the manufacturing process to ensure the robust-
ness and low defectivity required for automotive applications.
KEY FEATURES
High-speed operation
DC to 150 Mbps
No start-up initialization required
Wide Operating Supply Voltage
2.5–5.5 V
Up to 5000 VRMS isolation
60-year life at rated working voltage
High electromagnetic immunity
Ultra low power (typical)
5 V Operation
1.6 mA per channel at 1 Mbps
5.5 mA per channel at 100 Mbps
2.5 V Operation
1.5 mA per channel at 1 Mbps
3.5 mA per channel at 100 Mbps
Tri-state outputs with ENABLE
Schmitt trigger inputs
Selectable fail-safe mode
Default high or low output (ordering
option)
Precise timing (typical)
10 ns propagation delay
1.5 ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
5 ns minimum pulse width
Transient Immunity 50 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C
RoHS-compliant packages
SOIC-16 wide body
SOIC-16 narrow body
• QSOP-16
Automotive-grade OPNs available
AIAG compliant PPAP documentation
support
IMDS and CAMDS listing support
Industrial Applications
Industrial automation systems
Medical electronics
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power inverters
Communication systems
Safety Regulatory Approvals
UL 1577 recognized
Up to 5000 VRMS for 1 minute
CSA component notice 5A approval
IEC 60950-1, 62368-1, 60601-1 (re-
inforced insulation)
VDE certification conformity
VDE 0884-10
EN60950-1 (reinforced insulation)
CQC certification approval
• GB4943.1
Automotive Applications
On-board chargers
Battery management systems
Charging stations
Traction inverters
Hybrid Electric Vehicles
Battery Electric Vehicles
silabs.com | Building a more connected world. Rev. 2.01
1. Ordering Guide
Table 1.1. Ordering Guide for Valid OPNs1, 2, 3
Ordering Part
Number (OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Max Data
Rate
(Mbps)
Default
Output
State
Isolation rating
(kV)
Temp (°C) Package
QSOP-16 Packages
Si8650BB-B-IU 5 0 150 Low 2.5 –40 to 125 °C QSOP-16
Si8650EB-B-IU 5 0 150 High 2.5 –40 to 125 °C QSOP-16
Si8651BB-B-IU 4 1 150 Low 2.5 –40 to 125 °C QSOP-16
Si8651EB-B-IU 4 1 150 High 2.5 -40 to 125˚C QSOP-16
Si8652BB-B-IU 3 2 150 Low 2.5 -40 to 125˚C QSOP-16
Si8652EB-B-IU 3 2 150 High 2.5 -40 to 125˚C QSOP-16
Si8655BA-B-IU 5 0 150 Low 1.0 –40 to 125 °C QSOP-16
Si8655BA-C-IU 5 0 150 Low 1.0 –40 to 125 °C QSOP-16
SOIC-16 Packages
Si8650BB-B-IS1 5 0 150 Low 2.5 –40 to 125 °C NB SOIC-16
Si8650BD-B-IS 5 0 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8650EC-B-IS1 5 0 150 High 3.75 –40 to 125 °C NB SOIC-16
Si8650ED-B-IS 5 0 150 High 5.0 –40 to 125 °C WB SOIC-16
Si8651BB-B-IS1 4 1 150 Low 2.5 –40 to 125 °C NB SOIC-16
Si8651BC-B-IS1 4 1 150 Low 3.75 –40 to 125 °C NB SOIC-16
Si8651BD-B-IS 4 1 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8651EC-B-IS1 4 1 150 High 3.75 –40 to 125 °C NB SOIC-16
Si8651ED-B-IS 4 1 150 High 5.0 –40 to 125 °C WB SOIC-16
Si8652BB-B-IS1 3 2 150 Low 2.5 –40 to 125 °C NB SOIC-16
Si8652BC-B-IS1 3 2 150 Low 3.75 –40 to 125 °C NB SOIC-16
Si8652BD-B-IS 3 2 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8652EC-B-IS1 3 2 150 High 3.75 –40 to 125 °C NB SOIC-16
Si8652ED-B-IS 3 2 150 High 5.0 –40 to 125 °C WB SOIC-16
Si8655BA-B-IS 5 0 150 Low 1.0 –40 to 125 °C WB SOIC-16
Si8655BB-B-IS1 5 0 150 Low 2.5 –40 to 125 °C NB SOIC-16
Si8655BD-B-IS 5 0 150 Low 5.0 –40 to 125 °C WB SOIC-16
Notes:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-
tions and peak solder temperatures.
2. “Si” and “SI” are used interchangeably.
3. An "R" at the end of the part number denotes tape and reel packaging option.
Si8650/51/52/55 Data Sheet
Ordering Guide
silabs.com | Building a more connected world. Rev. 2.01 | 2
Automotive Grade OPNs
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-
duction steps.
Table 1.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5
Ordering Part
Number (OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Max Data
Rate
(Mbps)
Default
Output
State
Isolation rating
(kV)
Temp (°C) Package
QSOP-16 Packages
Si8655BA-AU 5 0 150 Low 1.0 –40 to 125 °C QSOP-16
SOIC-16 Packages
Si8651BB-AS1 4 1 150 Low 2.5 –40 to 125 °C NB SOIC-16
Si8651BD-AS 4 1 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8652BD-AS 3 2 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8655BA-AS 5 0 150 Low 1.0 –40 to 125 °C WB SOIC-16
Note:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-
tions.
2. “Si” and “SI” are used interchangeably.
3. An "R" at the end of the part number denotes tape and reel packaging option.
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is
included on shipping labels.
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-
tative for further information.
Si8650/51/52/55 Data Sheet
Ordering Guide
silabs.com | Building a more connected world. Rev. 2.01 | 3
Table of Contents
1. Ordering Guide ..............................2
2. Functional Description............................
5
2.1 Theory of Operation ............................5
2.2 Eye Diagram ..............................6
3. Device Operation ..............................7
3.1 Device Startup .............................8
3.2 Undervoltage Lockout ...........................8
3.3 Layout Recommendations..........................9
3.3.1 Supply Bypass ...........................9
3.3.2 Output Pin Termination.........................9
3.4 Fail-Safe Operating Mode ..........................9
3.5 Typical Performance Characteristics ......................10
4. Electrical Specifications ..........................12
5. Pin Descriptions .............................26
5.1 Si8650/51/52 Pin Descriptions ........................26
5.2 Si8655 Pin Descriptions ..........................27
6. Package Outline (16-Pin Wide Body SOIC) ...................28
7. Land Pattern (16-Pin Wide-Body SOIC)..................... 30
8. Package Outline (16-Pin Narrow Body SOIC) ..................31
9. Land Pattern (16-Pin Narrow Body SOIC) ....................33
10. Package Outline (16-Pin QSOP) .......................34
11. Land Pattern (16-Pin QSOP) ........................36
12. Top Marking (16-Pin Wide Body SOIC) ....................37
13. Top Marking (16-Pin Narrow Body SOIC) ...................38
14. Top Marking (16-Pin QSOP) ........................39
15. Revision History............................. 40
silabs.com | Building a more connected world. Rev. 2.01 | 4
K‘K‘KKKKKKKKKKKK |K KKK ‘KK KK‘KK KK [KK‘KKK K K K KK K KKKKKK KKKKKKKKKIKK KKKKK KKKKKKKK KKKKKKKKKKKKK KKKKKKKKKK
2. Functional Description
2.1 Theory of Operation
The operation of an Si865x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified
block diagram for a single Si865x channel is shown in the figure below.
RF
OSCILLATOR
MODULATOR DEMODULATOR
A B
Semiconductor-
Based Isolation
Barrier
Transmitter Receiver
Figure 2.1. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to
magnetic fields. See the figure below for more details.
Input Signal
Output Signal
Modulation Signal
Figure 2.2. Modulation Scheme
Si8650/51/52/55 Data Sheet
Functional Description
silabs.com | Building a more connected world. Rev. 2.01 | 5
mm A41] 10173 Waveiolm: 5 5? fa- «A In: C Hun/Slap Am: Mode Sample v Tug EmemaIPvescaleuv £1 IE Jfil _|K """ A 1:: wse v Amphtude' mm m mummMFéz-c-“fififl ..... IC4 20 EIEImVIdIv w '54 .| [IUUUmW .H lmv H 5°Cl 2.25 PM 1/3/2003
2.2 Eye Diagram
The figure below illustrates an eye-diagram taken on an Si8650. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern
Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8650 were captured on an oscilloscope. The re-
sults illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width
distortion and 350 ps peak jitter were exhibited.
Figure 2.3. Eye Diagram
Si8650/51/52/55 Data Sheet
Functional Description
silabs.com | Building a more connected world. Rev. 2.01 | 6
3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on
page 9, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to
determine outputs when power supply (VDD) is not present. Additionally, refer to the table on the following page for logic conditions
when enable pins are used.
Table 3.1. Si865x Logic Operation
VI Input 1,2 EN Input
1,2,3,4
VDDI State
1,5,6
VDDO State
1,5,6
VO Output 1,2 Comments
H H or NC P P H Enabled, normal operation.
L H or NC P P L
X 7 L P P Hi-Z 8 Disabled.
X 7 H or NC UP P L 9
H 9
Upon transition of VDDI from unpowered to pow-
ered, VO returns to the same state as VI in less
than 1 μs.
X 7 L UP P Hi-Z 8 Disabled.
X 7 X 7 P UP Undetermined Upon transition of VDDO from unpowered to pow-
ered, VO returns to the same state as VI within 1
μs, if EN is in either the H or NC state. Upon tran-
sition of VDDO from unpowered to powered, VO
returns to Hi-Z within 1 μs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the
enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si865x is operating in noisy
environments.
4. No Connect (NC) replaces EN1 on Si8650. No Connects are not internally connected and can be left floating, tied to VDD, or tied
to GND.
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.
6. “Unpowered” state (UP) is defined as VDD = 0 V.
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
9. See 1. Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). Some devices have default
output state = H, and some have default output state = L, depending on the ordering part number (OPN). For default high devi-
ces, the data channels have pull-ups on inputs/outputs. For default low devices, the data channels have pull-downs on inputs/
outputs.
Si8650/51/52/55 Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 2.01 | 7
Table 3.2. Enable Input Truth 1
P/N EN1 1,2 EN2 1,2 Operation
Si8650 H Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
L Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance state. 3
Si8651 H X Output A5 enabled and follow input state.
L X Output A5 disabled and in high impedance state. 3
X H Outputs B1, B2, B3, B4 are enabled and follow input state.
X L Outputs B1, B2, B3, B4 are disabled and in high impedance state. 3
Si8652 H X Outputs A4 and A5 are enabled and follow input state.
L X Outputs A4 and A5 are disabled and in high impedance state. 3
X H Outputs B1, B2, B3 are enabled and follow input state.
X L Outputs B1, B2, B3 are disabled and in high impedance state. 3
Si8655 Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally
pulled-up to local VDD by a 2 μA current source allowing them to be connected to an external logic level (high or low) or left
floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused,
it is recommended they be connected to an external logic level, especially if the Si865x is operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
3.1 Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow
the states of inputs.
3.2 Undervoltage Lockout
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its
specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or
exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when
VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.
Si8650/51/52/55 Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 2.01 | 8
kg»
INPUT
VDD1
UVLO-
VDD2
UVLO+
UVLO-
UVLO+
OUTPUT
tSTART tSTART tSTART tPHL tPLH
tSD
Figure 3.1. Device Behavior during Normal Operation
3.3 Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.5 Regulatory Information 1 on
page 21 and Table 4.6 Insulation and Safety-Related Specifications on page 22 detail the working voltage and creepage/clearance
capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted
by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1,
60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.
3.3.1 Supply Bypass
The Si865x family requires a 0.1 μF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed
as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series
with the inputs and outputs if the system is excessively noisy.
3.3.2 Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
3.4 Fail-Safe Operating Mode
Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered)
can either be a logic high or logic low when the output supply is powered. See Table 3.1 Si865x Logic Operation on page 7 and
1. Ordering Guide for more information.
Si8650/51/52/55 Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 2.01 | 9
zoo 300 25a 2n.» :5 22.5 m n.» 130 140 In] 9m 109 no nu w an: an: [Mbvsl 7n mausuw m zu o m an «a so an m m 90 menu 120 130140 150 m a mu Ran (mm) -o-sv —-— 3.3V +z.sv so a 15..) mo 0 n an so no no an an 140 150 on: me (Mhps) mzasowsowm o m 20 an m so so To an 90 1m m no no ma m n um um: (thl zoo mu 0 n 90 in» nu 110 m m 150 39 Dan we (Mbm) wwwwwsnm a an w we no mu m m: 150 on: me (Mbos) anwsowm 10 2n 0
3.5 Typical Performance Characteristics
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Table 4.2 Electri-
cal Characteristics on page 12 through Table 4.4 Electrical Characteristics on page 18 for actual specification limits.
Figure 3.2. Si8650/55 Typical VDD1 Supply Current vs. Data
Rate 5, 3.3, and 2.5 V Operation
Figure 3.3. Si8650/55 Typical VDD2 Supply Current vs. Data
Rate 5, 3.3, and 2.5 V Operation (15 pF Load)
Figure 3.4. Si8651 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
(15 pF Load)
Figure 3.5. Si8651 Typical VDD2 Supply Current vs. Data Rate
5, 3.3, and 2.5 V Operation
(15 pF Load)
Figure 3.6. Si8652 Typical VDD1 Supply Current vs. Data Rate
5, 3.3, and 2.5 V Operation
(15 pF Load)
Figure 3.7. Si8652 Typical VDD2 Supply Current vs. Data Rate
5, 3.3, and 2.5 V Operation
(15 pF Load)
Si8650/51/52/55 Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 2.01 | 10
90 80 0. 7 6.0 5 0 Am... >n_mn_ 10 20 30 A0 50 60 70 80 90 100110120 0 -40 -30 ~20 -10 Temperature (Degrees C]
Figure 3.8. Propagation Delay
vs. Temperature
Si8650/51/52/55 Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 2.01 | 11
4. Electrical Specifications
Table 4.1. Recommended Operating Conditions
Parameter Symbol Min Typ Max Unit
Junction Operating Temperature TJ 150 °C
Ambient Operating Temperature 1TA–40 25 125 °C
Supply Voltage
VDD1 2.375 — 5.5 V
VDD2 2.375 — 5.5 V
Note:
1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply
voltage.
Table 4.2. Electrical Characteristics
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage
Hysteresis
VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going
Input Threshold
VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 — — V
Low Level input voltage VIL — 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 – 0.4 4.8 — V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 μA
Output Impedance 1 ZO 50 — Ω
Enable Input High Current IENH VENx = VIH 2.0 — μA
Enable Input Low Current IENL VENx = VIL 2.0 — μA
DC Supply Current (All Inputs 0 V or at Supply)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 12
Parameter Symbol Test Condition Min Typ Max Unit
Si8651Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Bx, Ex
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Bx, Ex
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
5.2
5.7
7.2
mA
Si8651Bx, Ex
VDD1
VDD2
4.4
4.9
6.2
6.9
mA
Si8652Bx, Ex
VDD1
VDD2
4.6
4.9
6.4
6.8
mA
100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
22.1
5.7
28.7
mA
Si8651Bx, Ex
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 13
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
8.0
18.4
10.8
24
mA
Si8652Bx, Ex
VDD1
VDD2
11.7
15
15.2
19.5
mA
Timing Characteristics
Si865xBx, Ex
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 5.0 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propagation
Delay Timing on page 15
5.0 8.0 13 ns
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 4.2 Propagation
Delay Timing on page 15
0.2 4.5 ns
Propagation Delay Skew 2 tPSK(P-P) 2.0 4.5 ns
Channel-Channel Skew tPSK 0.4 2.5 ns
All Models
Output Rise Time trCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 15
2.5 4.0 ns
Output Fall Time tfCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 15
2.5 4.0 ns
Peak eye diagram jitter tJIT(PK) See Figure 2.3 Eye Diagram
on page 6
350 — ps
Common Mode
Transient Immunity
CMTI VI = VDD or 0 V
VCM = 1500 V (see Figure
4.3 Common Mode Transi-
ent Immunity Test Circuit on
page 15)
35 50 — kV/μs
Enable to Data Valid ten1 See Figure 4.1 ENABLE
Timing Diagram on page
15
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE
Timing Diagram on page
15
8.0 12 ns
Start-up Time 3 tSU 15 40 μs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 14
ENABLE
OUTPUTS
ten1 ten2
Figure 4.1. ENABLE Timing Diagram
Typical
Input
tPLH tPHL
Typical
Output
trtf
90%
10%
90%
10%
1.4 V
1.4 V
Figure 4.2. Propagation Delay Timing
Oscilloscope
3 to 5 V
Isolated
Supply
Si86xx
VDD2
OUTPUT
3 to 5 V
Supply
High Voltage
Surge Generator
Vcm Surge
Output
High Voltage
Differential
Probe
GND2GND1
VDD1
INPUT
Input
Signal
Switch
Input
Output
Isolated
Ground
Figure 4.3. Common Mode Transient Immunity Test Circuit
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 15
Table 4.3. Electrical Characteristics
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage
Hysteresis
VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 — — V
Low Level Input Voltage VIL — 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 – 0.4 3.1 — V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 μA
Output Impedance 1 ZO 50 — Ω
Enable Input High Current IENH VENx = VIH 2.0 — μA
Enable Input Low Current IENL VENx = VIL 2.0 — μA
DC Supply Current (all Inputs 0 V or at Supply)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 16
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Bx, Ex
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Bx, Ex
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
4.4
5.7
6.1
mA
Si8651Bx, Ex
VDD1
VDD2
4.3
4.3
6.0
6.0
mA
Si8652Bx, Ex
VDD1
VDD2
4.3
4.4
6.0
6.1
mA
100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
15.5
5.7
20.1
mA
Si8651Bx, Ex
VDD1
VDD2
6.6
13.2
8.9
17.1
mA
Si8652Bx, Ex
VDD1
VDD2
8.9
11.1
11.6
14.4
mA
Timing Characteristics
Si865xBx, Ex
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 5.0 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propagation
Delay Timing on page 15
5.0 8.0 13 ns
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 4.2 Propagation
Delay Timing on page 15
0.2 4.5 ns
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 17
Parameter Symbol Test Condition Min Typ Max Unit
Propagation Delay Skew 2 tPSK(P-P) 2.0 4.5 ns
Channel-Channel Skew tPSK 0.4 2.5 ns
All Models
Output Rise Time trCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 15
2.5 4.0 ns
Output Fall Time tfCL = 15 pF
(See Figure 4.2 Propagation
Delay Timing on page 15)
2.5 4.0 ns
Peak eye diagram jitter tJIT(PK) See Figure 2.3 Eye Diagram
on page 6
350 — ps
Common Mode
Transient Immunity
CMTI VI = VDD or 0 V
VCM = 1500 V
(See Figure 4.3 Common
Mode Transient Immunity
Test Circuit on page 15)
35 50 — kV/μs
Enable to Data Valid ten1 See Figure 4.1 ENABLE
Timing Diagram on page 15
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE
Timing Diagram on page 15
8.0 12 ns
Start-Up Time 3 tSU 15 40 μs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Table 4.4. Electrical Characteristics
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage Hysteresis VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 — — V
Low Level Input Voltage VIL — 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 – 0.4 2.3 — V
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 18
Parameter Symbol Test Condition Min Typ Max Unit
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 μA
Output Impedance 1 ZO 50 — Ω
Enable Input High Current IENH VENx = VIH 2.0 — μA
Enable Input Low Current IENL VENx = VIL 2.0 — μA
DC Supply Current (All Inputs 0 V or at Supply)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI = 0(Bx), 1(Ex)
VI = 0(Bx), 1(Ex)
VI = 1(Bx), 0(Ex)
VI = 1(Bx), 0(Ex)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Bx, Ex
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Bx, Ex
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
4.0
5.7
5.6
mA
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 19
Parameter Symbol Test Condition Min Typ Max Unit
Si8651Bx, Ex
VDD1
VDD2
4.2
4.0
5.9
5.6
mA
Si8652Bx, Ex
VDD1
VDD2
4.1
4.2
5.8
5.9
mA
100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs)
Si8650Bx, Ex, Si8655Bx
VDD1
VDD2
4.1
12.5
5.7
16.2
mA
Si8651Bx, Ex
VDD1
VDD2
6.0
10.8
8.1
14
mA
Si8652Bx, Ex
VDD1
VDD2
7.6
9.3
9.9
12.0
mA
Timing Characteristics
Si865xBx, Ex
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 5.0 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propagation
Delay Timing on page 15
5.0 8.0 14 ns
Pulse Width Distortion
|tPLH - tPHL|
PWD See Figure 4.2 Propagation
Delay Timing on page 15
0.2 5.0 ns
Propagation Delay Skew 2 tPSK(P-P) 2.0 5.0 ns
Channel-Channel Skew tPSK 0.4 2.5 ns
All Models
Output Rise Time trCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 15
2.5 4.0 ns
Output Fall Time tfCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 15
2.5 4.0 ns
Peak Eye Diagram Jitter tJIT(PK) See Figure 2.3 Eye Diagram
on page 6
350 — ps
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 20
Parameter Symbol Test Condition Min Typ Max Unit
Common Mode Transient Immunity CMTI VI = VDD or 0 V
VCM = 1500 V (See Figure
4.3 Common Mode Transi-
ent Immunity Test Circuit on
page 15)
35 50 — kV/μs
Enable to Data Valid ten1 See Figure 4.1 ENABLE
Timing Diagram on page 15
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE
Timing Diagram on page 15
8.0 12 ns
Startup Time 3 tSU 15 40 μs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Table 4.5. Regulatory Information 1
CSA
The Si865x is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873.
60950-1, 62368-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
60601-1: Up to 250 VRMS working voltage and 2 MOPP (Means of Patient Protection).
VDE
The Si865x is certified according to VDE 0884-10. For more details, see certificate 40018443.
0884-10: Up to 1200 Vpeak for basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
UL
The Si865x is certified under UL1577 component recognition program. For more details, see File E257455.
Rated up to 5000 VRMS isolation voltage for basic protection.
CQC
The Si865x is certified under GB4943.1-2011. For more details, see certificates CQC13001096110 and CQC13001096239.
Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
Note:
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. Regulatory Certifi-
cations apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec. Regulatory Certifications apply to
5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.
For more information, see 1. Ordering Guide.
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 21
Table 4.6. Insulation and Safety-Related Specifications
Parameter Symbol Test Condition Value Unit
WB SOIC-16 NB SOIC-16 QSOP-16
Nominal External Air Gap (Clearance)1CLR 8.0 4.9 3.6 mm
Nominal External Tracking (Creepage) 1 CPG 8.0 4.01 3.6 mm
Minimum Internal Gap
(Internal Clearance)
DTI 0.014 0.014 0.014 mm
Tracking Resistance CTI or PTI IEC60112 600 600 600 VRMS
Erosion Depth ED 0.019 0.019 0.031 mm
Resistance (Input-Output)2RIO 1012 1012 1012 Ω
Capacitance (Input-Output)2CIO f = 1 MHz 2.0 2.0 2.0 pF
Input Capacitance3CI4.0 4.0 4.0 pF
Note:
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage
limits as 4.7 mm minimum for the NB SOIC-16 package and QSOP-16 packages and 8.5 mm minimum for the WB SOIC-16
package. UL does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance
and creepage of the WB SOIC-16 package with designation "IS2" as 8 mm minimum. CSA certifies the clearance and creepage
limits as 3.9 mm minimum for the NB SOIC 16, 3.6 mm minimum for the QSOP-16, and 7.6 mm minimum for the WB SOIC-16
package with package designation "IS" as listed in the data sheet.
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 are shorted together to form
the first termina and pins 9–16 are shorted together to form the second terminal. The parameters are then measured between
these two terminals.
3. Measured from input pin to ground.
Table 4.7. IEC 60664-1 Ratings
Parameter Test Conditions Specification
WB SOIC-16 NB SOIC-16 QSOP-16
Basic Isolation Group Material Group I I I
Installation Classification Rated Mains Voltages < 150
VRMS
I-IV I-IV I-IV
Rated Mains Voltages < 300
VRMS
I-IV I-III I-III
Rated Mains Voltages < 400
VRMS
I-III I-II I-II
Rated Mains Voltages < 600
VRMS
I-III I-II I-II
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 22
Table 4.8. VDE 0884-10 Insulation Characteristics for Si86xxxx1
Parameter Symbol Test Condition
Characteristic
Unit
WB SOIC-16 NB SOIC-16 QSOP-16
Maximum Working Insulation
Voltage VIORM 1200 630 630 Vpeak
Input to Output Test Voltage VPR
Method b1
(VIORM x 1.875 = VPR, 100%
Production Test, tm = 1 sec,
Partial Discharge < 5 pC)
2250 1182 1182 Vpeak
Transient Overvoltage VIOTM t = 60 sec 6000 6000 6000 Vpeak
Surge Voltage VIOSM
Tested per IEC 60065 with surge
voltage of 1.2 µs/50 µs
Si865xxB/C/D tested with 4000 V 3077 3077 3077
Vpeak
Pollution Degree
(DIN VDE 0110, Table 1)
2 2 2
Insulation Resistance at TS, VIO
= 500 V RS>109>109>109Ω
Note:
1. Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21.
Table 4.9. VDE 0884-10 Safety Limiting Values1
Parameter Symbol Test Condition
Max
Unit
WB SOIC-16 NB SOIC-16 QSOP-16
Case Temperature TS150 150 150 °C
Safety Input, Output, or Supply
Current IS
θJA = 100 °C/W (WB SOIC-16)
105 °C/W (NB SOIC-16, QSOP-16)
VI = 5.5 V, TJ = 150 °C, TA = 25 °C
220 215 215 mA
Device Power Dissipation2PD415 415 415 mW
Note:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 4.4 (WB SOIC-16) Thermal Derat-
ing Curve, Dependence of Safety Limiting Values with Case Temperature per VDE 0884-10 on page 24 and Figure 4.5 (NB
SOIC-16, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE 0884-10
on page 24.
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V; TJ = 150 ºC; CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 23
100 150 erature (°C) 100 150 erature (°C)
Table 4.10. Thermal Characteristics
Parameter Symbol WB SOIC-16 NB SOIC-16/QSOP-16 Unit
IC Junction-to-Air Thermal Resistance θJA 100 105 °C/W
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
450
300
370
220
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE
0884-10
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
430
300
360
215
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
Figure 4.5. (NB SOIC-16, QSOP-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature
per VDE 0884-10
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 24
Table 4.11. Absolute Maximum Ratings 1
Parameter Symbol Min Max Unit
Storage Temperature 2 TSTG –65 150 °C
Ambient Temperature Under Bias TA–40 125 °C
Junction Temperature TJ 150 °C
Supply Voltage VDD1, VDD2 –0.5 7.0 V
Input Voltage VI–0.5 VDD + 0.5 V
Output Voltage VO–0.5 VDD + 0.5 V
Output Current Drive Channel
(All devices unless otherwise stated)
IO 10 mA
Output Current Drive Channel
(All Si865xxA-x-xx devices)
IO 22 mA
Latchup Immunity 3 100 V/ns
Lead Solder Temperature (10 s) 260 °C
Maximum Isolation (Input to Output) (1 sec)
NB SOIC-16, QSOP-16
4500 VRMS
Maximum Isolation (Input to Output) (1 sec)
WB SOIC-16
6500 VRMS
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to
conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
3. Latchup immunity specification is for slew rate applied across GND1 and GND2.
Si8650/51/52/55 Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 2.01 | 25
3333333]
5. Pin Descriptions
5.1 Si8650/51/52 Pin Descriptions
VDD1
A1
A3
A4
NC
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2/NC
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8650
A5
RF
XMITR
RF
RCVR
B5
VDD1
A1
A3
A4
EN1
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8651
RF
XMITR
RF
RCVR
A5 B5
VDD1
A1
A3
A4
EN1
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8652
RF
XMITR
RF
RCVR
A5 B5
Figure 5.1. Si8650/51/52 Pinout
Table 5.1. Si8650/51/52 Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
A1 2 Digital Input Side 1 digital input.
A2 3 Digital Input Side 1 digital input.
A3 4 Digital Input Side 1 digital input.
A4 5 Digital I/O Side 1 digital input or output.
A5 6 Digital I/O Side 1 digital input or output.
EN1/NC17 Digital Input Side 1 active high enable. NC on Si8650.
GND1 8 Ground Side 1 ground.
GND2 9 Ground Side 2 ground.
EN2 10 Digital Input Side 2 active high enable.
B5 11 Digital I/O Side 2 digital input or output.
B4 12 Digital I/O Side 2 digital input or output.
B3 13 Digital Output Side 2 digital output.
B2 14 Digital Output Side 2 digital output.
B1 15 Digital Output Side 2 digital output.
VDD2 16 Supply Side 2 power supply.
Note:
1. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
Si8650/51/52/55 Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 2.01 | 26
5.2 Si8655 Pin Descriptions
VDD1
A1
A3
A4
GND1
A2
VDD2
B2
B1
B4
B3
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8655
A5
RF
XMITR
RF
RCVR
B5
GND1 GND2
Figure 5.2. Si8655 Pinout
Table 5.2. Si8655 Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
GND1 21Ground Side 1 ground.
A1 3 Digital Input Side 1 digital input.
A2 4 Digital Input Side 1 digital input.
A3 5 Digital Input Side 1 digital input.
A4 6 Digital Input Side 1 digital input.
A5 7 Digital Input Side 1 digital input.
GND1 81Ground Side 1 ground.
GND2 91Ground Side 2 ground.
B5 10 Digital Output Side 2 digital output.
B4 11 Digital Output Side 2 digital output.
B3 12 Digital Output Side 2 digital output.
B2 13 Digital Output Side 2 digital output.
B1 14 Digital Output Side 2 digital output.
GND2 151Ground Side 2 ground.
VDD2 16 Supply Side 2 power supply.
Note:
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be
connected to external ground.
Si8650/51/52/55 Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 2.01 | 27
EX E-Im E H H H [E3 SEATING PLANE 2x 0 Q Don I: D H H H ; z 3 L EX B TIPS 16X b I-IME 4T” ,, x L » y L 7 SEE VIEW ”A”
6. Package Outline (16-Pin Wide Body SOIC)
The figure below illustrates the package details for the Si86xx digital isolator in a 16-pin wide-body SOIC package. The table below lists
the values for the dimensions shown in the illustration.
Figure 6.1. 16-Pin Wide Body SOIC
Si8650/51/52/55 Data Sheet
Package Outline (16-Pin Wide Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 28
Table 6.1. 16-Pin Wide Body SOIC Package Diagram Dimensions
Dimension Min Max
A — 2.65
A1 0.10 0.30
A2 2.05
b 0.31 0.51
c 0.20 0.33
D 10.30 BSC
E 10.30 BSC
E1 7.50 BSC
e 1.27 BSC
L 0.40 1.27
h 0.25 0.75
θ 0° 8°
aaa — 0.10
bbb — 0.33
ccc — 0.10
ddd — 0.25
eee — 0.10
fff — 0.20
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.
Si8650/51/52/55 Data Sheet
Package Outline (16-Pin Wide Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 29
7. Land Pattern (16-Pin Wide-Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin wide-body SOIC package. The table below
lists the values for the dimensions shown in the illustration.
Figure 7.1. 16-Pin Wide Body SOIC PCB Land Pattern
Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 9.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-
sion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si8650/51/52/55 Data Sheet
Land Pattern (16-Pin Wide-Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 30
ED 7 ex E523; , , \ |—|—U—|Q °°° C D 2x 5 TIPS L_ 7 PIN 1 LD‘ DETAIL 'A' I-IEEE 7A h x 45‘ fig ‘L "7 A1 ' ] PLANE 7 t: SEE DETAIL 'A'-/
8. Package Outline (16-Pin Narrow Body SOIC)
The figure below illustrates the package details for the Si86xx in a 16-pin narrow-body SOIC package. The table below lists the values
for the dimensions shown in the illustration.
Figure 8.1. 16-Pin Narrow Body SOIC
Si8650/51/52/55 Data Sheet
Package Outline (16-Pin Narrow Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 31
Table 8.1. 16-Pin Narrow Body SOIC Package Diagram Dimensions
Dimension Min Max
A — 1.75
A1 0.10 0.25
A2 1.25
b 0.31 0.51
c 0.17 0.25
D 9.90 BSC
E 6.00 BSC
E1 3.90 BSC
e 1.27 BSC
L 0.40 1.27
L2 0.25 BSC
h 0.25 0.50
θ 0° 8°
aaa 0.10
bbb 0.20
ccc 0.10
ddd 0.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Si8650/51/52/55 Data Sheet
Package Outline (16-Pin Narrow Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 32
1 FL VA 7 _ _ EEEE m w 9 Y r3333
9. Land Pattern (16-Pin Narrow Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin narrow-body SOIC package. The table
below lists the values for the dimensions shown in the illustration.
Figure 9.1. 16-Pin Narrow Body SOIC PCB Land Pattern
Table 9.1. 16-Pin Narrow Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si8650/51/52/55 Data Sheet
Land Pattern (16-Pin Narrow Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 33
2X QDODCD PIN11D / . Ea cc: C. __ SEA'IINE PL ANE GAUGE PLANE —L— — — — — a L - a DETAJL 'A“ ‘H‘h x 45‘ ”—1 1:2 I 1__ E” SEE DETAIL ’A‘j
10. Package Outline (16-Pin QSOP)
The figure below illustrates the package details for the Si86xx in a 16-pin QSOP package. The table below lists the values for the di-
mensions shown in the illustration.
Figure 10.1. 16-Pin QSOP Package
Si8650/51/52/55 Data Sheet
Package Outline (16-Pin QSOP)
silabs.com | Building a more connected world. Rev. 2.01 | 34
Table 10.1. 16-Pin QSOP Package Diagram Dimensions
Dimension Min Max
A — 1.75
A1 0.10 0.25
A2 1.25
b 0.20 0.30
c 0.17 0.25
D 4.89 BSC
E 6.00 BSC
E1 3.90 BSC
e 0.635 BSC
L 0.40 1.27
L2 0.25 BSC
h 0.25 0.50
θ 0° 8°
aaa 0.10
bbb 0.20
ccc 0.10
ddd 0.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AB.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Si8650/51/52/55 Data Sheet
Package Outline (16-Pin QSOP)
silabs.com | Building a more connected world. Rev. 2.01 | 35
rrrqgggm 65432109 FEE
11. Land Pattern (16-Pin QSOP)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin QSOP package. The table below lists the
values for the dimensions shown in the illustration.
Figure 11.1. 16-Pin QSOP PCB Land Pattern
Table 11.1. 16-Pin QSOP Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 0.635
X1 Pad Width 0.40
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOP63P602X173-16N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si8650/51/52/55 Data Sheet
Land Pattern (16-Pin QSOP)
silabs.com | Building a more connected world. Rev. 2.01 | 36
12. Top Marking (16-Pin Wide Body SOIC)
Si86XYSV
YYWWRTTTTT
TW
e4
Figure 12.1. 16-Pin Wide Body SOIC Top Marking
Table 12.1. 16-Pin Wide Body SOIC Top Marking Explanation
Line 1 Marking:
Base Part Number
Ordering Options
(See 1. Ordering Guide for more information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5)
Y = # of reverse channels (2, 1, 0) 1
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV
Line 2 Marking:
YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the year
and work week of the mold date.
RTTTTT = Mfg Code
Manufacturing code from assembly house
“R” indicates revision
Line 3 Marking:
Circle = 1.7 mm Diameter
(Center-Justified)
“e4” Pb-free symbol
Country of Origin ISO Code Abbreviation TW = Taiwan as shown, TH = Thailand
Note:
1. Si8655 has 0 reverse channels.
1
Si8650/51/52/55 Data Sheet
Top Marking (16-Pin Wide Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 37
13. Top Marking (16-Pin Narrow Body SOIC)
Si86XYSV
YYWWRTTTTT
e3
Figure 13.1. 16-Pin Narrow Body SOIC Top Marking
Table 13.1. 16-Pin Narrow Body SOIC Top Marking Explanation
Line 1 Marking:
Base Part Number
Ordering Options
(See 1. Ordering Guide for more information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5)
Y = # of reverse channels (2, 1, 0) 1
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV
Line 2 Marking:
Circle = 1.2 mm Diameter “e3” Pb-Free Symbol
YY = Year
WW = Work Week
Assigned by the assembly subcontractor. Corresponds to the
year and work week of the mold date.
RTTTTT = Mfg Code
Manufacturing code from assembly house.
“R” indicates revision.
Note:
1. Si8655 has 0 reverse channels.
Si8650/51/52/55 Data Sheet
Top Marking (16-Pin Narrow Body SOIC)
silabs.com | Building a more connected world. Rev. 2.01 | 38
—|O\ Owes —<—|><><>< z—m/u=""><>
14. Top Marking (16-Pin QSOP)
Figure 14.1. 16-Pin QSOP Top Marking
Table 14.1. 16-Pin QSOP Top Marking Explanation
Line 1 Marking:
Base Part Number
Ordering Options
(See 1. Ordering Guide for more information).
86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5)
Y = # of reverse channels (2, 1, 0) 1
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating.
A = 1 kV; B = 2.5 kV; C = 3.75 kV
Line 2 Marking: RTTTTT = Mfg Code
Manufacturing code from assembly house.
“R” indicates revision.
Line 3 Marking:
YY = Year
WW = Work Week
Assigned by the Assembly House. Corresponds to the year and
work week of the mold date.
Note:
1. Si8655 has 0 reverse channels.
Si8650/51/52/55 Data Sheet
Top Marking (16-Pin QSOP)
silabs.com | Building a more connected world. Rev. 2.01 | 39
15. Revision History
Revision 2.01
January 2018
Added new table to Ordering Guide for Automotive-Grade OPN options.
Revision 2.0
October 18, 2017
Added new OPNs in Ordering Guide for IU (QSOP) and IS2 (8 mm creepage WB SOIC) package options.
Added 62368-1 references throughout.
Removed 61010-1 references throughout.
Revision 1.9
November 30, 2016
Updated data sheet format.
Added note to Table 1.1 Ordering Guide for Valid OPNs1, 2, 3 on page 2 for denoting tape and reel marking.
Revision 1.8
June 18, 2015
Updated Table 4.5 Regulatory Information 1 on page 21.
Added CQC certificate numbers.
Updated 1. Ordering Guide.
Removed references to moisture sensitivity levels.
Removed former note 2.
Revision 1.7
September 25, 2013
Added Figure 4.3 Common Mode Transient Immunity Test Circuit on page 15.
Added references to CQC throughout.
Added references to 2.5 kVRMS devices throughout.
Updated 1. Ordering Guide.
Updated 12. Top Marking (16-Pin Wide Body SOIC).
Updated 14. Top Marking (16-Pin QSOP).
Revision 1.6
June 26, 2012
Added junction temperature spec to Table 4.11 Absolute Maximum Ratings 1 on page 25.
Updated 3.3.1 Supply Bypass.
Removed former Section 3.3.2. Pin Connections.
Updated table notes in 5.1 Si8650/51/52 Pin Descriptions.
Removed Rev A devices from 1. Ordering Guide.
Updated 6. Package Outline (16-Pin Wide Body SOIC).
Added revision description to Top Markings.
Revision 1.5
March 20, 2012
Updated 1. Ordering Guide to include MSL2A.
Si8650/51/52/55 Data Sheet
Revision History
silabs.com | Building a more connected world. Rev. 2.01 | 40
Revision 1.4
February 15, 2012
Updated Table 1.1 Ordering Guide for Valid OPNs1, 2, 3 on page 2.
Updated Note 1 with MSL2A.
Revision 1.3
November 11, 2011
Added Output Current Drive Channel specification for Si865xxA-x-xx devices.
Added Latchup Immunity specification.
Revision 1.2
September 14, 2011
Updated High Level Output Voltage VOH to 3.1 V in Table 4.3 Electrical Characteristics on page 16.
Updated High Level Output Voltage VOH to 2.3 V in Table 4.4 Electrical Characteristics on page 18.
Revision 1.1
July 14, 2011
Reordered spec tables to conform to new convention.
Removed "pending" throughout document.
Revision 1.0
March 31, 2011
Added chip graphics on the front page.
Moved Table 4.1 Recommended Operating Conditions on page 12 and Table 4.11 Absolute Maximum Ratings 1 on page 25.
Updated 4. Electrical Specifications.
Moved Table 3.1 Si865x Logic Operation on page 7 and Table 3.2 Enable Input Truth 1 on page 8.
Moved 3.5 Typical Performance Characteristics.
Updated 5.1 Si8650/51/52 Pin Descriptions.
Updated 5.2 Si8655 Pin Descriptions.
Updated 1. Ordering Guide.
Revision 0.2
September 15, 2010
Deleted Sections 4.3.4 and 4.3.5.
Updated 1. Ordering Guide.
Updated Table 1.1 Ordering Guide for Valid OPNs1, 2, 3 on page 2.
Added 3.4 Fail-Safe Operating Mode.
Revision 0.1
June 30, 2010
Initial release.
Si8650/51/52/55 Data Sheet
Revision History
silabs.com | Building a more connected world. Rev. 2.01 | 41
SILICON LABS
http://www.silabs.com
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
Smart.
Connected.
Energy-Friendly.
Products
www.silabs.com/products
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other
products or brand names mentioned herein are trademarks of their respective holders.

Products related to this Datasheet

DGTL ISO 2500VRMS 5CH GP 16SOIC
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16SOIC
DGTL ISO 3750VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16QSOP
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16QSOP
DGTL ISO 1000VRMS 5CH GP 16QSOP
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16SOIC
DGTL ISO 3750VRMS 5CH GP 16SOIC
DGTL ISO 3750VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16SOIC
DGTL ISO 3750VRMS 5CH GP 16SOIC
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16QSOP
DGTL ISO 3750VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16QSOP
KIT EVAL SI86XX 3.75KV 5KV
DGTL ISO 2500VRMS 5CH GP 16QSOP
DGTL ISO 2500VRMS 5CH GP 16SOIC
DGTL ISO 1000VRMS 5CH GP 16SOIC
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 2500VRMS 5CH GP 16QSOP
DGTL ISO 5000VRMS 5CH GP 16SOIC
DGTL ISO 3750VRMS 5CH GP 16SOIC
DGTL ISO 5000VRMS 5CH GP 16SOIC