SST12LP15B Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
MICFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
Data Sheet
www.microchip.com
Features
High Gain:
– More than 32 dB gain across 2.4–2.5 GHz over tempera-
ture -40°C to +85°C
Configured for High Linearity
20 dBm at 2.5% DEVM, MCS7-HT40, 200mA
18 dBm at 1.8% DEVM, MCS9-VHT40, 180 mA
23 dBm typical spectrum mask compliance, MCS0-20
Configured for High Efficiency
– 23 dBm at 3% DEVM, 802.11g OFDM 54 Mbps, 310mA
25.5 dBm typical spectrum mask compliance, 802.11b,
1Mbps
>29 dBm P1dB
– Meets 802.11g OFDM ACPR requirement up to 26 dBm
High power-added efficiency/Low operating current
•Low I
REF current for power-up/down control
–I
REF <2 mA
High-speed power-up/down
Turn on/off time (10%- 90%) <100 ns
Typical power-up/down delay with driver delay included
<200 ns
Low Shut-down Current:2µA
High temperature stability
– Typically 1 dB gain/power variation between 0°C to
+85°C
Excellent On-chip power detection
20 dB linear dynamic range
– Temperature- and VSWR-insensitive
Simple input/output matching
Packages available
16-contact VQFN – 3mm x 3mm
12-contact XQFN – 2mm x 2mm
All non-Pb (lead-free) devices are RoHS compliant
Applications
WLAN (IEEE 802.11b/g/n/256 QAM)
Cordless phones
2.4 GHz ISM wireless equipment
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
SST12LP15B is a versatile power amplifier based on the highly-reliable InGaP/
GaAs HBT technology. Easily configured for high-linear operation meeting the
EVM requirements for 256 QAM applications, and for high-efficiency applications
with excellent power-added efficiency while operating over the 2.4- 2.5 GHz fre-
quency band. Configured for high efficiency, SST12LP15B will typically meet the
802.11g spectrum mask at 23 dBm with 270 mA. Configured for high linearity,
SST12LP15B will provide less than 2.5% EVM, up to 20 dBm, with MCS7-HT40
modulation, and less than 1.75% EVM, up to 18 dBm, with MCS9-VHT40 modula-
tion. This power amplifier also features easy board-level usage along with high-
speed power-up/down control through the reference voltage pins. The
SST12LP15B is offered in both a 3mm x 3mm, 16-contact VQFN package and a
2mm x 2mm, 12-contact XQFN package.
MICROCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
2
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Product Description
SST12LP15B is a versatile power amplifier based on the highly-reliable InGaP/GaAs HBT technology.
This power amplifier can be easily configured for both high-efficiency with low EVM for high data rate
applications and for high power-added efficiency (PAE) while operating over the 2.4- 2.5 GHz fre-
quency band. There are two application circuits provided to show this versatility.
Configured for high power-added efficiency, SST12LP15B provides more than 32 dB gain and typically
meets 3% EVM up to 23 dBm output power for 54 Mbps 802.11g operation. This power amplifier also
meets spectral mask compliance output power up to 25 dBm for 802.11g and up to 25.5 dBm for
802.11b operation. At 4.5V operation, the SST12LP15B-VQFN provides up to 24 dBm at 3% EVM.
Configured for high linearity, SST12LP15B provides more than 34 dB gain. It typically meets 2.5%
EVM up to 20 dBm using MCS7-HT40 modulation and meets 1.8% EVM up to 18 dBm using MCS9-
VHT40 modulation.
This device also features easy board-level usage along with high-speed power-up/down control
through the reference voltage pins. Ultra-low reference current (total IREF ~2 mA) makes the
SST12LP15B controllable by an on/off switching signal directly from the baseband chip. These fea-
tures coupled with low operating current make SST12LP15B ideal for the final stage power amplifica-
tion in battery-powered 802.11b/g/n/256 QAM WLAN transmitter applications.
The power amplifier has an excellent, wide dynamic range (>20 dB), dB-wise linear on-chip power
detector. The excellent on-chip power detector provides a reliable solution to board-level power control.
The SST12LP15B is offered in both 16-contact VQFN (3mm x 3mm) and 12-contact XQFN (2mm x
2mm) packages. See Figures 3 and 4 for pin assignments and Tables 1 and 2 for pin descriptions.
IIIIIIIII
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
3
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Functional Blocks
Figure 1: Functional Block Diagram for 3mm x 3mm, 16-contact VQFN (QVC)
2
56 8
16
VCC1
15
1
14
VCC2
NC
49
11
12
10
13
NC
VCCb
VREF1
VREF2
DNU
VCC3
RFOUT
RFOUT
Det
NC
3
RFIN
RFIN
NC
Bias Circuit
7
1424 B2.1
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
4
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Figure 2: Functional Block Diagram for 2mm x 2mm, 12-contact XQFN (QXB)
12
VCC1
11 10
VCC2
NC
7
9
8
VREF1
VREF2
DET
VCC3
RFOUT/VCC2
NC
NC
2
1
3
RFIN
VCCb
456
75029 B1.2
Bias Circuit
6‘ MlCFIOCHIP 80> H 50> H .mH
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
5
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Pin Assignments and Pin Descriptions
Figure 3: Pin Assignments for 3mm x 3mm, 16-contact VQFN (QVC)
Table 1: Pin Description for 3mm x 3mm,16-contact VQFN
Symbol Pin No. Pin Name Type1
1. I=Input, O=Output
Function
GND 0 Ground The center pad should be connected to RF ground
with several low inductance, low resistance vias.
NC 1 No Connection Unconnected pins.
RFIN 2 I RF input, DC decoupled
RFIN 3 I RF input, DC decoupled
NC 4 No Connection Unconnected pins.
VCCb 5 Power Supply PWR Supply voltage for bias circuit
VREF1 6 PWR 1st and 2nd stage idle current control
VREF2 7 PWR 3rd stage idle current control
DNU 8 Do Not Use Do not use or connect
Det 9 O On-chip power detector
RFOUT 10 O RF output
RFOUT 11 O RF output
VCC3 12 Power Supply PWR Power supply, 3rd stage
NC 13 No Connection Unconnected pins.
VCC2 14 Power Supply PWR Power supply, 2nd stage
NC 15 No Connection Unconnected pins.
VCC1 16 Power Supply PWR Power supply, 1st stage
T1.0 75029
56 8
16
VCC1
15 14
VCC2
NC
9
11
12
10
13
NC
VCCb
VREF1
VREF2
DNU
VCC3
RFOUT
RFOUT
Det
2
1
4
3
NC
RFIN
RFIN
NC
7
1424 16-vqfn P1.0
Top View
(contacts facing down)
RF and DC GND
0
6‘ MlCFIOCHIP
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
6
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Figure 4: Pin Assignments for 2mm x 2mm, 12-contact XQFN (QXB)
Table 2: Pin Description for 2mm x 2mm,12-contact XQFN
Symbol Pin No. Pin Name Type1
1. I=Input, O=Output
Function
GND 0 Ground Low-inductance ground pad
NC 1 No Connection Unconnected pin
RFIN 2 I RF input, DC decoupled
VCCb 3 Power Supply PWR Supply voltage for bias circuit
VREF1 4 PWR 1st and 2nd stage idle current control
VREF2 5 PWR 3rd stage idle current control
DET 6 O On-chip power detector
NC 7 No Connection Unconnected pin
RFOUT 8 O RF output, DC decoupled
VCC3 9 Power Supply PWR Power supply, 3rd stage
VCC2 10 Power Supply PWR Power supply, 2nd stage
NC 11 No Connection Unconnected pin
VCC1 12 Power Supply PWR Power supply, 1st stage
T2.0 75029
12
VCC1
11 10
VCC2
NC
7
9
8
VREF1
VREF2
DET
VCC3
RFOUT
NC
NC
2
1
3
RFIN
VCCb
456
1424 P.10
Top View
(Contacts
facing down)
MICROCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
7
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Electrical Specifications
The DC and RF specifications for the power amplifier are specified below.
Table 4 shows the DC and RF characteristics for the configuration that achieves high linearity for 802.11n and
256 QAM applications. The associated schematic is shown in Figure 25 for the16-contact VQFN package.
The RF performance is shown in figures 20 through 24.
Table 5 shows the DC and RF characteristics for the configuration that achieves high power-added efficiency
(PAE). The associated schematic is shown in Figure 18 for the 16-contact VQFN package. The RF perfor-
mance is shown in figures 13 through 17.
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute
Maximum Stress Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these conditions or conditions greater than those defined in the
operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating con-
ditions may affect device reliability.)
Average Input power (PIN)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5 dBm
1. Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommended. Exceeding the max-
imum rating of average output power could cause permanent damage to the device.
Average output power (POUT)1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28 dBm
Supply Voltage (VCCb, VCC1, VCC2, VCC3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.0V2
2. Output power must be limited to 20 dBm at 5V VCC and limited to 26 dBm at 4.5V VCC
Reference voltage (VREF1, VREF2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +3.3V
DC supply current (ICC)3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mA
3. Measured with 100% duty cycle 54 Mbps 802.11g OFDM Signal
Operating Temperature (TA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40ºC to +85ºC
Storage Temperature (TSTG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40ºC to +120ºC
Maximum Junction Temperature (TJ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150ºC
Surface Mount Solder Reflow Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C for 10 seconds
Table 3: Operating Range
Range Ambient Temp VCC
Industrial -40°C to +85°C 3.0V to 4.5V
T3.1 75029
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
8
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Linearity, Low EVM Applications
Typical Performance Characteristics for High Linear Output Power for 16-con-
tact VQFN package (Schematic in Figure 11)
Table 4: DC and RF Characteristics for High-Linearity Performance at 25°C, at 3.3V VCC
unless otherwise noted, for 16-contact VQFN (Schematic in Figure 25)
Symbol Parameter Min. Typ Max. Unit
VCC Supply Voltage at pins 5, 12, 14, and 16 3.0 3.3 4.5 V
ICQ Idle current with no RF 135 mA
VREG Reference Voltage 2.80 2.85 2.95 V
ICC
Current Consumption at 18 dBm, 256 QAM 180 mA
Current Consumption at 20 dBm, MCS7-HT40 200 mA
Current Consumption at 23 dBm, MCS0-HT20 365 mA
FL-U Frequency range
2412
2484 MHz
G Small signal gain 34 37 dB
GVAR1 Gain variation over band (2412–2484 MHz) ±0.5 dB
GVAR2 Gain ripple over channel (20 MHz) 0.2 dB
2f
Harmonics at 25 dBm, without external filters
-43
dBm/
MHz
3f -25
4f -30
5f -30
EVM
EVM @ 22 dBm Output Power with 802.11g OFDM 54 Mbps signal 3 %
EVM @ 24 dBm Output Power with 802.11g OFDM 54 Mbps at 4.5V VCC 3%
EVM @ 20 dBm Output Power with MCS7-HT40 2.5 %
EVM @ 18 dBm Output Power with MCS9-VHT40 1.8 %
POUT
Output Power to meet 802.11g OFDM 6 Mbps spectrum mask 23.5 dBm
Output Power to meet 802.11b DSSS 1 Mbps spectrum mask 24 dBm
Output Power to meet MCS0-HT20 spectrum mask 23 dBm
Output Power to meet 802.11b CCK 1 Mbps spectrum mask at 4.5V VCC 27 dBm
T4.1 75029
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
9
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, unless otherwise specified
Figure 5: S-Parameters
S11 versus Frequency
-30
-25
-20
-15
-10
-5
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Frequency (GHz)
S11 (dB)
Frequency (GHz)
S21 (dB)
S22 (dB)
Frequency (GHz)
S12 (dB)
Frequency (GHz)
1424 S-Parms. 3.0
S12 versus Frequency
-80
-70
-60
-50
-40
-30
-20
-10
0
S21 versus Frequency
-40
-30
-20
-10
0
10
20
30
40
S22 versus Frequency
-30
-25
-20
-15
-10
-5
0
8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.00.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
6‘ MICROCHIP
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
10
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, MCS7-HT40 802.11n Signal,
unless otherwise noted
Figure 6: Dynamic EVM versus Output Power measured with sequence only
Figure 7: Dynamic EVM versus Output Power for 256 QAM with MCS9-VHT40 Modulation
1424 F11.0
0
1
2
3
4
5
6
7
8
9
10
5 6 7 8 9 101112131415161718192021222324
EVM (%)
Output Power (dBm)
Dynamic EVM versus Output Power
2412 MHz
2442 MHz
2472 MHz
1424 F22.0
0
1
2
3
4
5
6
7
8
9
10
5 6 7 8 9 101112131415161718192021222324
EVM (%)
Output Power (dBm)
2472, MHz
6‘ MICROCHIP
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
11
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, MCS7-HT40 802.11n Signal,
unless otherwise noted
Figure 8: Gain versus Output Power
Figure 9: Total Current Consumption
1424 F12.1
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Power Gain (dB)
Output Power (dBm)
Power Gain versus Output Power
2412 MHz
2442 MHz
2472 MHz
1424 F13.1
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
0123456789101112131415161718192021222324
Supply Current (mA)
Output Power (dBm)
Instantaneous Current versus Output Power
2412 MHz
2442 MHz
2472 MHz
MICROCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
12
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, MCS7-HT40 802.11n Signal,
unless otherwise noted
Figure 10:Detector Characteristics versus Output Power
Figure 11:Typical Schematic for High-Linearity, 802.11b/g/n/256 QAM Applications for 16-
contact VQFN, 3.3V
1424 F15.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Detector Voltage (V)
Output Power (dBm)
Instantaneous Vdet versus Output Power
2412 MHz
2442 MHz
2472 MHz
2
5678
9
11
16 15
1
50 /20mil
50 RFout
100pF
100pF
2.7pF
50 /125 mil
50 RFin
VREG1 VREG 2
14 13
4.7 μF
0.1 μF
Vcc
4
12
10
μF0.1
R2=200 Ω
R1=200 Ω
3
0.1 μF
Det
1424 Schematic.4.0
Suggested operation conditions:
1
VCC = 3.3V
2. VREG1=VREG2=2.85V
*
Could be removed if -7 dB
return loss is acceptable
R3=100
R5=68
*
μF0.1
SST12LP15B
3x3 16L VQFN
Top View
Length = 220 mil,
Width = 10 mil trace
R4=7.5K
MlCFIOCHIP L I, m L1, H HI- ULIUIJ
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
13
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Linearity Configuration (continued)
Figure 12:Typical Schematic for High-Linearity, 802.11b/g/n/256 QAM Applications for 16-
contact VQFN, 4.5V
2
5678
9
11
16 15
1
50 RFout
100pF100pF
2.7pF
50 /125 mil
50 RFin
VREG1 VREG2
14 13
4.7 μF
0.1 μF
Vcc
4
12
10
μF0.1
56249
3
0.1 μF
Det 1424 Schematic.7.0
Suggested operation conditions:
1
VCC = 4.5V
2. VREG1=VREG2=2.85V
100
1.8 nH
μF0.1
SST12LP15B
3x3 16L VQFN
Top View
7.5K
Det_Ref
0
1.2 nH
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
14
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Efficiency Configuration
Typical Performance Characteristics for High Linear Power, with Good PAE
Configuration, for 16-contact VQFN package (Schematic in Figure 18)
Table 5: DC and RF Characteristics for High Linear Power, with Good PAE Performance at
25°C, for 16-contact VQFN (Schematic in Figure 18)
Symbol Parameter Min. Typ Max. Unit
VCC Supply Voltage at pins 5, 12, 14, and 16 3.0 3.3 4.5 V
ICQ Idle current to meet EVM ~3.5% @ 23 dBm Output Power with 802.11g
OFDM 54 Mbps signal 80 mA
VREG1 Reference Voltage for pin 6, with 806 resistor 2.75 2.85 2.95 V
VREG2 Reference Voltage for pin 7, with 806 resistor 2.75 2.85 2.95 V
ICC
Current Consumption to meet 802.11g OFDM 6 Mbps Spectrum mask
@ 25 dBm Output Power 330 mA
Current Consumption to meet 802.11b DSSS 1 Mbps Spectrum mask
@ 24 dBm Output Power 310 mA
FL-U Frequency range 2412 2484 MHz
G Small signal gain 35 36 dB
GVAR1 Gain variation over band (2412–2484 MHz) ±0.5 dB
GVAR2 Gain ripple over channel (20 MHz) 0.2 dB
2f
Harmonics at 25 dBm, without external filters
-43 dBm/
MHz
3f -25
4f -30
5f -30
EVM Added EVM @ 23 dBm Output Power with 802.11g OFDM 54 Mbps signal 3.5 %
POUT Output Power to meet 802.11g OFDM 6 Mbps spectrum mask 24 25 dBm
Output Power to meet 802.11b DSSS 1 Mbps spectrum mask 23 24 dBm
T5.1 75029
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
15
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Efficiency Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, unless otherwise specified
Figure 13:S-Parameters
S11 versus Frequency
-30
-25
-20
-15
-10
-5
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Frequency (GHz)
S11 (dB)
Frequency (GHz)
S21 (dB)
S22 (dB)
Frequency (GHz)
S12 (dB)
Frequency (GHz)
1424 S-Parms. 2.0
S12 versus Frequency
-80
-70
-60
-50
-40
-30
-20
-10
0
S21 versus Frequency
-40
-30
-20
-10
0
10
20
30
40
S22 versus Frequency
-30
-25
-20
-15
-10
-5
0
8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.00.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
16
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Efficiency Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, 54 Mbps 802.11g OFDM Signal
Figure 14:EVM versus Output Power measured with equalizer training set to sequence
only
Figure 15:Gain versus Output Power
1424 F6.0
EVM versus Output Power
0
1
2
3
4
5
6
7
8
9
10
0123456789 10111213141516171819 20 21 22 23 24 25 26 27 28
Output Power (dBm)
EVM (%)
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
1424 F7.0
Gain versus Output Power
20
22
24
26
28
30
32
34
36
38
40
012345678910111213141516171819 20 21 22 23 24 25 26 27 28
Output Power (dBm)
Gain (dB)
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
17
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Efficiency Configuration (continued)
Figure 16:Total Current Consumption for 802.11g operation versus Output Power
Figure 17:Detector Characteristics versus Output Power
1424 F8.0
Supply Current versus Output Power
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
0123456789 10111213141516171819 20 21 22 23 24 25 26 27 28
Output Power (dBm)
Supply Current (mA)
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
1424 F10.0
Detector Voltage versus Output Power
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
0123456789 10111213141516171819 20 21 22 23 24 25 26 27 28
Output Power (dBm)
Detector Voltage (V)
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
MlCFIOCHIP 1. 1,, w L1,, >—| H» “H |—< flflflfl="" alu:="" 32="" schem="">
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
18
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Efficiency Configuration (continued)
Figure 18:Typical Schematic for 3.3V, High-Efficiency 802.11b/g/n Applications for 16-con-
tact VQFN
2
5678
9
11
16 15
1
50 /20mil
50 RFout
100pF
100pF
2.7pF
50 /125 mil
50 RFin
VREG1 VREG 2
14 13
4.7 μF
0.1 μF
Vcc
4
12
10
μ
F
0.1
R2=806
R1=806
3
0.1 μF
Det 1424 Schematic.3.2
Suggested operation conditions:
1
VCC = 3.3V
2. VREG1=VREG2=2.85V
*Could be removed if -7 dB
return loss is acceptable
R3=100
3.3nH*
μF0.1
SST12LP15B
3x3 16L VQFN
Top View
Length = 220 mil,
Width = 10 mil trace
R4=7.5K
MlCFIOCHIP 1. 1,, L 1,, a H» flflflfl Schem
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
19
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
3mm x 3mm, 16-contact VQFN High-Efficiency Configuration (continued)
Figure 19:Typical Schematic for 4.5V, High-Efficiency 802.11b/g/n Applications for 16-con-
tact VQFN
2
5678
9
11
16 15
1
50 / 0.8
50 RFout
100pF
100pF
2.7pF
50 /6
50 RFin
VREG1 VREG 2
14 13
10 μF
0.1 μF
Vcc
4
12
10
μ
F
0.1
R2=56
R1=249
3
0.1 μF
Det 1424 Schematic.6.0
Suggested operation conditions:
1
VCC = 4.5V
2. VREG1=VREG2=2.85V
* Could be removed if -7 dB
return loss is acceptable
**Position close to the PA
R3=100
1.8nH*
μF**0.1
SST12LP15B
3x3 16L VQFN
Top View
R4=7.5K
12 nH
μF**0.1
MlCFIOCHIP —
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
20
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
2mm x 2mm, 12-contact XQFN High-Linearity Configuration
Typical Performance Characteristics for High-Spectrum Mask Compliant Output
Power Configuration for 12-contact XQFN package (Schematic in Figure 25)
Table 6: DC and RF Characteristics for High-Spectrum Mask Compliant Output Power,
Performance at 25°C, for 12-contact XQFN (Schematic in Figure 25)
Symbol Parameter Min. Typ Max. Unit
VCC Supply Voltage at pins 3, 9, 10, and 12 3.0 3.3 4.5 V
ICQ Idle current to meet EVM ~3.5% @ 23 dBm Output Power with 802.11g
OFDM 54 Mbps signal 190 mA
VREG1 Reference Voltage for pin 4 2.75 2.85 2.95 V
VREG2 Reference Voltage for pin 5 2.75 2.85 2.95 V
ICC
Current Consumption to meet 802.11g OFDM 6 Mbps Spectrum mask
@ 25.5 dBm Output Power 380 mA
Current Consumption to meet 3% EVM, 54 Mbps@ 23 dBm Output
Power 310 mA
FL-U Frequency range 2412 248
4MHz
G Small signal gain 31 32 dB
GVAR1 Gain variation over band (2412–2484 MHz) ±0.5 dB
GVAR2 Gain ripple over channel (20 MHz) 0.2 dB
2f
Harmonics at 25 dBm, without external filters
-43 dBm
/
MHz
3f -25
4f -30
5f -30
EVM Added EVM @ 23 dBm Output Power with 802.11g OFDM 54 Mbps
signal 3.0 %
POUT Output Power to meet 802.11g OFDM 6 Mbps spectrum mask 24.5 25.5 dBm
Output Power to meet 802.11b DSSS 1 Mbps spectrum mask 24.5 25.5 dBm
T6.1 75029
IIIIIIIII
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
21
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
2mm x 2mm, 12-contact XQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, unless otherwise specified
Figure 20:S-Parameters
S11 versus Frequency
Frequency (GHz)
S11 (dB)
Frequency (GHz)
S21 (dB)
S22 (dB)
Frequency (GHz)
S12 (dB)
Frequency (GHz)
1424 S-Parms. 4.2
S12 versus Frequency
S21 versus Frequency S22 versus Frequency
-
30
-
25
-
20
-
15
-
10
-5
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
-80
-70
-60
-50
-40
-30
-20
-10
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
8.0
-40
-30
-20
-10
0
10
20
30
40
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 -30
-25
-20
-15
-10
-5
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
6‘ MICROCHIP E
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
22
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
2mm x 2mm, 12-contact XQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, 54 Mbps 802.11g OFDM Sig-
nal unless otherwise noted
Figure 21: EVM versus Output Power measured with equalizer training set to sequence only
1424 F18.0
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
EVM (%)
Output Power (dBm)
EVM versus Output Power
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
6‘ MICROCHIP
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
23
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
2mm x 2mm, 12-contact XQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, 54 Mbps 802.11g OFDM Sig-
nal unless otherwise noted
Figure 22:Gain versus Output Power
Figure 23:Total Current Consumption for 802.11g operation versus Output Power
1424 F16.1
20
22
24
26
28
30
32
34
36
38
40
012345678910111213141516171819202122232425262728
Power Gain (dB)
Output Power (dBm)
Power Gain versus Output Power
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
1424 F19.1
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
0 1 2 3 4 5 6 7 8 9 10 1112 1314 1516 17 18 19 20 21 22 23 24 25 26 27 28
Supply Current (mA)
Output Power (dBm)
Supply Current versus Output Power
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
MICROCHIP — “H F «H E >—| H» a H“
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
24
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
2mm x 2mm, 12-contact XQFN High-Linearity Configuration (continued)
Test Conditions: VCC = 3.3V, VREG = 2.85V, TA = 25°C, 54 Mbps 802.11g OFDM Sig-
nal unless otherwise noted
Figure 24:Detector Characteristics versus Output Power
Figure 25:Typical Schematic for High-Linearity, 802.11b/g/n/256 QAM Applications for 12-
contact XQFN
1424 F20.1
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Detector Voltage (V)
Output Power (dBm)
Detector Voltage versus Output Power
Freq=2.412 GHz
Freq=2.442 GHz
Freq=2.472 GHz
RFout
100pF
100pF
3.0pF
RFin
VREG1 VREG2
10 µF
0.1 µF
Vcc
µF0.1
91Ω
51Ω
VDet 1424 Schematic.5.1
Suggested operation conditions:
1
VCC = 3.3V
2. VREG1=VREG2=2.85V
100Ω
µF0.1
SST12LP15B
2x2 12L XQFN
Top View
12 11 10
7
9
8
2
1
3
456
µF0.1
5mm
50Ω/ 2.7 mm
68Ω
MICROCHIP — XX XX XXX XXXX \—
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
25
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Product Ordering Information
Valid combinations for SST12LP15B
SST12LP15B-QVCE SST12LP15B-QXBE
SST12LP15B Evaluation Kits
SST12LP15B-QVCE-K SST12LP15B-QXBE-K
Note:Valid combinations are those products in mass production or will be in mass production. Consult your SST
sales representative to confirm availability of valid combinations and to determine availability of new combi-
nations.
SST 12 LP 15B - QVCE
XX XX XXX -XXXX
Environmental Attribute
E1 = non-Pb contact (lead) finish
Package Modifier
C = 16 contact
B = 12 contact
Package Type
QV = VQFN (3mm x 3mm)
QX = XQFN (2mm x 2mm)
Product Family Identifier
Product Type
P = Power Amplifier
Voltage
L = 3.0-3.6V
Frequency of Operation
2 = 2.4 GHz
Product Line
1 = RF Products
1. Environmental suffix “E” denotes non-Pb sol-
der. SST non-Pb solder devices are “RoHS
Compliant”.
MlCFIOCHIP — TOPVIEW SIDE VIEW BOTTOM VIEW seenmes 7 land} - <_ mm="" 100="" 10.075="" l="" _osssc="" 9="" _="" ms="" son="" "="" f="" 10075="" *1="" f‘="" ‘="" 03;="">
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
26
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Packaging Diagrams
Figure 26:16-contact Very-thin Quad Flat No-lead (VQFN)
Package Code: QVC
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
Microchip Technology Drawing C04-14015A Sheet 1 of 1
16-Lead Very Thin Quad Flatpack No-Leads (QVCE/F) - 3x3 mm Body [VQFN]
16-vqfn-3x3-QVC-2.0
Note:
1. Complies with JEDEC JEP95 MO-220J, variant VEED-4 except external paddle nominal dimensions.
2. From the bottom view, the pin #1 indicator may be either a 45-degree chamfer or a half-circle notch.
3. The external paddle is electrically connected to the die back-side and possibly to certain VSS leads.
This paddle can be soldered to the PC board; it is suggested to connect this paddle to the VSS of the unit.
Connection of this paddle to any other voltage potential can result in shorts and/or electrical malfunction of the device.
4. Untoleranced dimensions are nominal target dimensions.
5. All linear dimensions are in millimeters (max/min).
MlCFIOCHIP — lOPVItW SIDEVIEW BOTTOM VIEW 9a: na :5 . j-gg _, / 1 and‘} I] U U U / p; “—_»- Em Pm“ “:36! I] D 1 G / engraved m ; see Hole 2’ 10:05 I] D + 032 Q j nsc J n * D a ,— 0265 if D (Has *0 D D ‘ -«msmx T -I I. _.‘ |._ 4’ JO ‘7 v.1) U14 0.40 0J5 024 u m 2x2 0mm
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
27
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Figure 27:12-contact Extremely-thin Quad Flat No-lead (XQFN)
Package Code: QXB
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
Microchip Technology Drawing C04-14012A Sheet 1 of 1
12-Lead Extremely Thin Quad Flatpack No-Leads (QXBE/F) - 2x2 mm Body [XQFN]
Note: 1. Complies with JEDEC JEP95 MO-220J, variant VEED-4 except external paddle nominal dimensions and
pull-back of terminals from body edge.
2. The topside pin #1 indicator is laser engraved; its approximate shape and location is as shown.
3. From the bottom view, the pin #1 indicator may be either a curved indent or a 45-degree chamfer.
4. The external paddle is electrically connected to the die back-side and possibly to certain VSS leads.
This paddle must be soldered to the PC board; it is required to connect this paddle to the VSS of the unit.
Connection of this paddle to any other voltage potential will result in shorts and electrical malfunction
of the device.
5. Untoleranced dimensions are nominal target dimensions.
6. All linear dimensions are in millimeters (max/min).
6‘ MlCFIOCHIP © SMmSPMMuF
©2014 Silicon Storage Technology, Inc. DS70005029C 07/15
28
2.4 GHz WLAN 802.11b,g,n, 256 QAM Power Amplifier
SST12LP15B
Data Sheet
Table 7:Revision History
Revision Description Date
00 Initial release of data sheet Mar 2010
01 Added QVC package to the data sheet. This required changes through-
out the document and the addition of the following: Figures 1, 3, 13-18,
and 27; Tables 1, 5, and 8.
Changed document status from “Data Sheet” to “Preliminary Specifica-
tion”
Oct 2010
02 Added Figures 20 - 25 and Tables 4 and 7 Jan 2011
03 Updated document status from “Preliminary Specification” to “Data
Sheet” Feb 2011
AApplied new document format
Released document under letter revision system
Updated spec number S71424 to DS75029
Updated XQFN information in Figures 20- 25
Added package dimensions throughout.
Oct 2012
BAdded information for 4.5V. Jul 2014
CModified Features and Applications on page 1
Updated “Electrical Specifications” on page 7
Revised Table 4 on page 8
Replaced Figures 6,8,9,10 and added Figure 7. Updated Figure 11.
Updated Test Conditions throughout.
Jul 2015
© 2015 Microchip Technology Inc.
SST, Silicon Storage Technology, the SST logo, SuperFlash, and MTP are registered trademarks of Microchip Technology, Inc.
MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Microchip Technology, Inc. All other trademarks and registered trade-
marks mentioned herein are the property of their respective owners.
Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current
package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.
Memory sizes denote raw storage capacity; actual usable capacity may be less.
Microchip makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions
of Sale.
For sales office locations and information, please see www.microchip.com.
www.microchip.com
ISBN:978-1-63277-576-4

Products related to this Datasheet

IC AMP 802.11B/G/N 2.4GHZ 16VQFN
IC AMP 802.11B/G/N 2.4GHZ 16VQFN
IC AMP 802.11B/G/N 2.4GHZ 16VQFN
IC AMP 802.11B/G/N 2.4GHZ 12XQFN