IRF7739L1TRPbF Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
International ‘IeRRecfiHer — TW ® 1k 5 45‘ $53 «3% EE Descri IRF ow ex Form (1qu IRF773§L1TRPOF DirectFET Large Can Tape and Reel 4000 IRF773§L1TRPOF Absolute Maximum Ratin s
DirectFETPower MOSFET
Typical values (unless otherwise specified)
Applicable DirectFET Outline and Substrate Outline
l RoHS Compliant, Halogen Free
l Lead-Free (Qualified up to 260°C Reflow)
lIdeal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount Techniques
l Industrial Qualified
Fig 1. Typical On-Resistance vs. Gate Voltage
Click on the hyperlink (to the relevant technical document) for more details.
Click on the hyperlink (to the DirectFET website) for more details
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.021mH, RG = 25Ω, IAS = 160A.
Notes: Fig 2. Typical On-Resistance vs. Drain Current
SB SC M2 M4 L4 L6 L8
DirectFET ISOMETRIC
L8
Description
The IRF7739L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems.
The IRF7739L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the
device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability
improvements, and makes this device ideal for high performance power converters.
V
DSS
V
GS
R
DS(on)
40V min ±20V max 0.70mΩ@ 10V
Q
g tot
Q
gd
V
gs(th)
220nC 81nC 2.8V
Absolute Maximum Ratings
Parameter Units
V
DS
Drain-to-Source Voltage V
V
GS
Gate-to-Source Voltage
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
I
D
@ T
C
= 100°C Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
A
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Package Limited)
I
DM
Pulsed Drain Current
E
AS
Single Pulse Avalanche Energy mJ
I
AR
Avalanche Current A
160
375
270
Max.
190
46
1070
±20
40
270
5.0 5.5 6.0 6.5 7.0 7.5 8.0
VGS, Gate -to -Source Voltage (V)
0
2
4
6
8
10
Typical RDS(on) (mΩ)
ID = 160A
TJ = 125°C
TJ = 25°C
0 40 80 120 160 200
ID , Drain Current (A)
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
Typical RDS (on) (mΩ)
VGS = 10V
D D
G
S
S
S
S
S
S
S
S
IRF7739L1TRPbF
Applications
1 www.irf.com © 2012 International Rectifier February 13 ,2013
Ordering Information
Base part number Package Type Orderable Part Number
Form
Quantity
DirectFET Large Can
Tape and Reel
4000
Standard Pack
AB Egg/A J
2 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400μs; duty cycle 2%.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 40 ––– ––– V
ΔΒV
DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient ––– 0.008 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 0.70 1.0 mΩ
V
GS(th)
Gate Threshold Voltage 2.0 2.8 4.0 V
ΔV
GS(th)
/ΔT
J
Gate Threshold Voltage Coefficient ––– -6.7 ––– mV/°C
I
DSS
Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 280 ––– ––– S
Q
g
Total Gate Charge ––– 220 330
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 46 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 19 ––– nC
Q
gd
Gate-to-Drain Charge ––– 81 120
Q
godr
Gate Charge Overdrive ––– 74 ––– See Fig. 9
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)––– 100 –––
Q
oss
Output Charge ––– 83 ––– nC
R
G
Gate Resistance
–––
1.5 –––
Ω
t
d(on)
Turn-On Delay Time ––– 21 –––
t
r
Rise Time –71–
t
d(off)
Turn-Off Delay Time ––– 56 ––– ns
t
f
Fall Time ––– 42 –––
C
iss
Input Capacitance ––– 11880 –––
C
oss
Output Capacitance ––– 2510 ––– pF
C
rss
Reverse Transfer Capacitance ––– 1240 –––
C
oss
Output Capacitance ––– 8610 –––
C
oss
Output Capacitance ––– 2230 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current ––– ––– 110
(Body Diode) A
I
SM
Pulsed Source Current ––– ––– 1070
(Body Diode)
V
SD
Diode Forward Voltage ––– ––– 1.3 V
t
rr
Reverse Recovery Time ––– 87 130 ns
Q
rr
Reverse Recovery Charge ––– 250 380 nC
MOSFET symbol
R
G
=1.8Ω
V
DS
= 25V
Conditions
V
GS
= 0V, V
DS
= 32V, f=1.0MHz
V
GS
= 0V, V
DS
= 1.0V, f=1.0MHz
V
DS
= 16V, V
GS
= 0V
V
DD
= 20V, V
GS
= 10V
V
GS
= 0V
ƒ = 1.0MHz
I
D
= 160A
V
DS
= V
GS
, I
D
= 250μA
V
DS
= 40V, V
GS
= 0V
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 1.0mA
V
GS
= 10V, I
D
= 160A
T
J
= 25°C, I
F
= 160A, V
DD
= 20V
di/dt = 100A/μs
T
J
= 25°C, I
S
= 160A, V
GS
= 0V
showing the
integral reverse
p-n junction diode.
I
D
= 160A
V
DS
= 32V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
GS
= 10V
V
DS
= 10V, I
D
= 160A
V
DS
= 20V
IEER — Absolute Maximum Rali s INGLE PULSE les, 1, Duly Facmr D : H/t2
3 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple incontact with top (Drain) of part.
Used double sided cooling, mounting pad with large heatsink.
Notes:
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.1080 0.000171
0.6140 0.053914
0.4520 0.006099
1.47e-05 0.036168
Absolute Maximum Ratings
Parameter Units
P
D
@T
C
= 25°C Power Dissipation W
P
D
@T
C
= 100°C Power Dissipation
P
D
@T
A
= 25°C Power Dissipation
T
P
Peak Soldering Temperature °C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
R
θ
JA
Junction-to-Ambient ––– 40
R
θ
JA
Junction-to-Ambient 12.5 –––
R
θJA
Junction-to-Ambient 20 ––– °C/W
R
θJ-Can
Junction-to-Can ––– 1.2
R
θJ-PCB
Junction-to-PCB Mounted ––– 0.4
270
-55 to + 175
Max.
3.8
125
63
I‘BR
4 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
Fig 5. Typical Output CharacteristicsFig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage Fig 9. Typical Total Gate Charge vs.
Gate-to-Source Voltage
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
60μs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2345678
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 25V
60μs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 160A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 50 100 150 200 250 300
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
ID= 160A
IEZR OPERAT‘ON IN THIS Tc : 25%: T] : 175‘s
5 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.0 0.5 1.0 1.5 2.0 2.5 3.0
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0 1 10 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100μsec
1msec
10msec
DC
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
ID, Drain Current (A)
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS(th), Gate threshold Voltage (V)
ID = 250μA
ID = 1.0mA
ID = 1.0A
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
700
800
900
1000
1100
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 29A
46A
BOTTOM 160A
pulsewudm, tav, assuming \anche Curran pu‘sewldm‘ Iav‘ ng (Forlunher info. see ‘ p w :{él{ T T
6 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 15. Typical Avalanche Current vs. Pulsewidth
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 )
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·ta
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
RGVDD
D.U.T
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤj = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
25 50 75 100 125 150 175
Starting TJ
, Junction Temperature (°C)
0
50
100
150
200
250
300
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cy cle
ID
= 160A
IEZR
7 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
Fig 18a. Gate Charge Test Circuit Fig 18b. Gate Charge Waveform
Fig 19b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 20b. Switching Time Waveforms
Fig 20a. Switching Time Test Circuit
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
1K
VCC
DUT
0
L
S
20K
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
8 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
DirectFET Board Footprint, L8 (Large Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G = GATE
D = DRAIN
S = SOURCE
G
D
S
D
DD
D
D
S
S
SS
S
S
S
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IEZR E H W Eu a U k l a A L : ,
9 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
DirectFET Part Marking
DirectFET Outline Dimension, L8 Outline (LargeSize Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
PART NUMBER
LOGO
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
GATE MARKING
+
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
0.017
0.029
0.003
0.007
0.057
0.104
0.236
0.048
0.026
0.024
MAX
0.360
0.280
0.38
0.68
0.02
0.09
1.35
2.55
5.90
1.18
0.55
0.58
MIN
9.05
6.85
0.42
0.74
0.08
0.17
1.45
2.65
6.00
1.22
0.65
0.62
MAX
9.15
7.10
0.015
0.027
0.003
0.001
0.100
0.053
0.232
0.046
0.023
0.022
MIN
0.270
0.356
METRIC IMPERIAL
DIMENSIONS
0.98 1.02
0.73 0.77
0.0400.039
0.0300.029
L1 0.2155.35 5.45 0.211
Qualification Information |ntemofiono| ISER Rectifier contact International Rectifier, please visit w
10 www.irf.com © 2012 International Rectifier February 13 ,2013
IRF7739L1TRPbF
DirectFET Tape & Reel Dimension (Showing component orientation).
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
IMPERIAL
MIN
4.69
0.154
0.623
0.291
0.283
0.390
0.059
0.059
MAX
12.10
4.10
16.30
7.60
7.40
10.10
N.C
1.60
MIN
11.90
3.90
15.90
7.40
7.20
9.90
1.50
1.50
METRIC
DIMENSIONS
MAX
0.476
0.161
0.642
0.299
0.291
0.398
N.C
0.063
+
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
 Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
 Applicable version of JEDEC standard at the time of product release.
* Industrial qualification standards except autoclave test conditions
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4000 parts. (ordered as IRF7739L1TRPBF).
MAX
N.C
N.C
0.520
N.C
3.940
0.880
0.720
0.760
IMPERIAL
MIN
330.00
20.20
12.80
1.50
99.00
N.C
16.40
15.90
STANDARD OPTION (QTY 4000)
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.20
N.C
100.00
22.40
18.40
19.40
MIN
12.992
0.795
0.504
0.059
3.900
N.C
0.650
0.630
METRIC
Qualification level
MSL1
(per JEDEC J-STD-020D
†††
)
RoHS Compliant Yes
Moisture Sensitivity Level DirectFET
Qualification Information
Industrial
†† *
Revision History
Date Comments
2/12/2013 TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document

Products related to this Datasheet

MOSFET N-CH 40V 46A DIRECTFETL8
MOSFET N-CH 40V 46A DIRECTFETL8
MOSFET N-CH 40V 46A DIRECTFETL8